Космическое пространство: великая пустота, полная загадок

Полеты в космическое пространство

Чтобы преодолеть притяжение нашей планеты и выйти на ее орбиту, физическое тело должно достигнуть первой космической скорости –7,9 км/с. Преодолеть этот рубеж сумел советский «Спутник-1» в 1957 году.

Для победы над гравитацией Земли и выхода в межпланетное пространство, аппарат должен двигаться быстрее 11 км/с. Это вторая космическая скорость. Впервые она была достигнута в январе 1959 года советским автоматическим зондом «Луна-1».

Космическое пространство — максимально враждебная для человека среда

Для выхода в межзвездное пространство и преодоления притяжения Солнца, необходимо развить третью космическую скорость, которая составляет 16,67 км в секунду. Пока наибольшей скоростью покидания Земли обладал аппарат «Новые горизонты» – 16,26 км/с. По пути он смог прибавить еще 4 км/с за счет гравитационного маневра около Юпитера. В будущем это позволит ему покинуть пределы нашей системы и отправиться в межзвездное пространство.

Для преодоления притяжения Млечного Пути и выхода за его пределы необходима четвертая космическая скорость — 550 км/с. Солнце относительно центра галактики двигается медленнее – со скоростью 220 км/с.

Околоземное космическое пространство

Околоземное космическое пространство ( ОКП) представляет собой внешнюю газовую оболочку, которая окружает планету. Оно играет роль в сложнейших солнечно-земных взаимосвязях, определяющих условия жизни на Земле.

Околоземное космическое пространство содержит радиационный пояс, представляющий собой гигантскую магнитную ловушку, которая захватывает выбрасываемые Солнцем электроны и протоны, и они совершают внутри пояса колебательные и вращательные движения вдоль и вокруг магнитных силовых линий. Во внутренней части преобладают электроны с энергией десятки и сотни электронвольт, а во внешней — протоны с энергией в сотни тысяч электронвольт. Во время солнечных возмущений потоки частиц ( солнечный ветер) приводят к увеличению поглощения и искажению траекторий распространения радиоволн.

В околоземном космическом пространстве на расстоя нии около 36 тыс. км от поверхности Земли существует не только магнитное, но и электрическое поле.

В околоземном космическом пространстве наблюдаются достаточно сильные потоки заряженных частиц ( главным образом, протонов и электронов), локализованные в радиационных поясах Земли. За пределами магнитосферы Земли ( на удалениях более 60000 — 100000 км), а также в области высоких широт ( более 60) на элементы и аппаратуру КА могут воздействовать квазистационарные потоки солнечного ветра ( протоны, электроны и альфа-частицы с энергией в несколько килоэлектронвольт) и потоки галактических космических лучей ( протоны и альфа-частицы очень высокой энергии с плотностью 2 — 5 частиц / ( см2 — с), а также потоки протонов, электронов и альфа-частиц в широком энергетическом диапазоне, возникающие в случайные моменты времени при крупных солнечных вспышках.

Земли и околоземного космического пространства, обусловленное физ.

Чем опасно загрязнение околоземного космического пространства.

Пространственное распределение ( а давления и ( б удельной.

Анализ экологической обстановки околоземного космического пространства позволяет сделать вывод, что вероятность поражения КА фрагментами космического мусора очень велика.

Основным источником загрязнения околоземного космического пространства ( ОКП) являются запуски космических ракет и полеты кораблей многоразового использования, сопровождающиеся выбросом продукции сгорания топлива двигателей; электромагнитные излучения радиопередающих систем.

Среда распространения радиоволн представляет собой околоземное и космическое пространство. Околоземное пространство ( до высоты 1000 км) называют атмосферой. Атмосфера решающим образом влияет на условия распространения радиоволн.

В результате вывода в околоземное и космическое пространство объектов со случайными орбитами и общего засорения этого пространства космическими объектами возникает загрязнение космоса. Наблюдались случаи разрушения ядерных реакторов, находящихся на орбитах, что приводит к радиоактивному загрязнению космоса.

Магнитосфера Земли — область околоземного космического пространства, где физические процессы управляются в основном геомагнитным полем.

Серьезную опасность представляет состояние околоземного космического пространства и прежде всего той его части, которую образует верхняя атмосфера. Запуск ракет, ликвидация орбитальных космических аппаратов с образованием космического мусора, электромагнитное загрязнение, проникновение загрязняющих веществ из приземной атмосферы нарушают естественные свойства ближнего космоса. Антропогенное воздействие на данное пространство вследствие его интенсивного освоения достигло критического уровня, при котором газовая оболочка Земли утрачивает способность защищать все живое от губительной радиации. Известная проблема озонового слоя является частью проблемы охраны ближнего космоса.

Магнитосфера Земли — область околоземного космического пространства, где физические процессы управляются в основном геомагнитным полем.

Космические скорости для Земли.

Немного о темной материи

Все звезды, многочисленные галактики и другие видимые астрономические объекты составляют лишь небольшую часть от общего количества вещества нашей Вселенной. Ее львиную долю занимает так называемая темная материя, которая не испускает электромагнитного излучения и не поглощает его. Следует понимать, что данное название не подразумевает ничего ужасного и зловещего, просто оно говорит о невозможности наблюдения данного феномена. Физики, астрономы и космологи не знают, что это такое, но ее существование является почти неоспоримым фактом.

Данная субстанция практически не взаимодействует с обычным веществом, поэтому ее так сложно обнаружить. Единственным способом узнать о существовании – отследить гравитационное воздействие, которое темная материя оказывает на астрономические объекты.

Темная материя — величайшая загадка Вселенной

Согласно некоторым моделям, темная материя и энергия занимает в составе Вселенной более 95%, при этом на звезды и другие небесные тела приходится менее 1%, а еще 3,6% занимает межгалактический газ.

Впервые предположение о существовании во Вселенной темной материи было выдвинуто астрономом Фрицем Цвики в 1933 году. Он изучал скорости галактики и обнаружил, что для их устойчивости необходима масса в несколько раз больше, чем весят звезды, входящие в их состав. На эту работу поначалу не обратили особого внимания, но вскоре аналогичные результаты стали получать и другие астрономы.

Существует множество теорий относительно этой загадочной субстанции, но все они остаются недоказанными. Над исследованиями в данной области бьются десятки научных коллективов в разных странах, но пока, к сожалению, безрезультатно. Видимо, темная материя взаимодействует с нашим миром только посредством гравитации, зафиксировать которую наши детекторы сегодня не в состоянии.

Правовые основы освоения Вселенной

Космическое пространство – это новое и уникальное поле для человеческой деятельности, которое мы только начинаем осваивать. Из-за ряда особенностей, исследования в основном носят международный характер. Поэтому начало космической эры привело к появлению новой отрасли права, предназначенной для регулирования отношений между государствами и организациями в этой специфической сфере деятельности. Сегодня правовой режим регламентируют несколько международных договоров о космическом пространстве, принятых в разное время.

Работы в этом направлении начались еще до запусков на орбиту, в конце 50-х годов. Их инициатором стала Организация Объединенных Наций. Первыми были рассмотрены предложения о мирном использовании космического пространства и запрете на испытания ядерного оружия на орбите.

Правовой режим изучения и освоения космического пространства регламентируют несколько международных договоров, принятых в разное время

Буквально через несколько дней после запуска «Спутника-1» Генассамблея ООН призвала создать инспекцию для обеспечения исключительно мирного использования космического пространства. По данному вопросу была принята специальная резолюция. В 1958 году при ООН появился Комитет (КОПУОС), в задачи которого входило изучение правовых проблем исследований околоземного пространства. Он работает и сегодня, имеет два подкомитета: юридический и научно-технический.

Можно сказать, что в те годы были заложены основы международного космического права, регулирующие деятельность в данной сфере. С трибуны ООН был четко сформулирован главный принцип: космическое пространство и небесные тела свободны для исследования и освоения, и не подлежат присвоению тем или иным государством. Космос должен служить общим интересам человечества.

В 1967 году был подписан Договор о международном режиме использования космического пространства и небесных тел, включая Луну. В 1968 году появилось Соглашение о спасении космонавтов, а в 1972 – Конвенция об ответственности за ущерб, причиненный КА. В 1979 году было подписано Соглашение о деятельности на Луне и других небесных объектах.

В 1982 году была принята конвенция по радиосвязи, которая регулировала вопросы использования радиочастот, а также геостационарной орбиты.

В 80-е годы Комитетом были разработаны несколько международных соглашений, направленных против размещения в космосе противоспутникового оружия. В 2006 году аналогичный документ на рассмотрение ООН внесли Россия и Китай. В 2011 году Генассамблея приняла резолюцию, в которой содержались рекомендации по укреплению доверия между государствами в космической деятельности.

Существующая сегодня договорная база определяет для космического пространства режим, абсолютно отличный от того, что действует в отношении воздушного пространства. Последний находится под суверенитетом государства, над территорией которого он расположен. С космосом другая проблема: нет четкого юридического определения, на какой высоте он начинается. Сегодня существует более тридцати гипотез, определяющих границу между околоземным пространством и атмосферой, но ни одна из них не получила общего или хотя бы подавляющего признания.

Космическое право — очень молодое направление юридической науки, находящееся еще на стадии формирования

В 1979 году СССР предложил в качестве официальной границы космоса считать отметку в сто километров над уровнем моря. Великобритания и США выступили против этой инициативы, заявив, что любая демаркация будет только мешать космическим исследованиям.

Позже несколько экваториальных стран заявили, что геостационарная орбита из-за ее специфического расположения находится под их суверенитетом. Понятно, что подобный месседж не был поддержан международным сообществом.

ДРУГИЕ СТРАНЫ

В использовании космоса заинтересованы не только самые крупные и развитые страны. Хотя другие государства и не располагают ресурсами для реализации космических программ в рассмотренных выше масштабах, средние по масштабам страны Запада и многие страны третьего мира смотрят на космос как на способ исследования своих природных ресурсов и основу технического прогресса. В таких странах имеются специальные космические агентства или министерства, которые занимаются вопросами исследования космоса и регламентирования космической деятельности.

В Канаде такими вопросами занимался Национальный научно-исследовательский совет, но в 1989 было создано Канадское космическое агентство (CSA). Наиболее известный вклад Канады в космическую технику – дистанционно-управляемая манипуляторная система (механическая рука) для американского МВКК «Шаттл». Агентство участвует в разработке международной космической станции.

С начала 1960-х годов Австралия обеспечивает работу многочисленных станций слежения на своей территории для НАСА. Австралийское космическое управление добилось решения о строительстве космодрома на северо-восточном берегу штата Квинсленд. Благодаря близкому расположению к экватору (самому близкому в странах со стабильной демократией западного типа) это место идеально подходит для запуска геостационарных ИСЗ.

Среди других стран, принимающих участие в космической деятельности, следует назвать Индию, Израиль, Бразилию и Индонезию.

ПРИЛОЖЕНИЕ

За пределами Солнечной системы

Межзвездное пространство представляет собой области внутри галактик. Говоря другими словами, это космическое пространство без небесных тел, заполненное облаками межзвёздного газа, пылью, излучением и электромагнитными полями. Кроме того, здесь присутствует таинственная темная материя.

Его состав – это результат первичного нуклеосинтеза, который происходил после Большого взрыва, а также ядерных реакций, протекающих в звездах. Распределение вещества в межзвездном пространстве весьма неоднородно: здесь есть облака разной температуры, скопления горячего газа. Его особенностью является низкая плотность – на кубический сантиметр приходится не более 1 тыс. атомов.

На этом уровне основной единицей измерения является световой год, который равняется примерно 9,5 трлн км. До внешней границы гипотетического облака Оорта, например, 2 св. года, а до Проксимы Центавра – ближайшей к нам звезды – 4,2. Размер Местного межзвездного облака, через которое сейчас движется наша система, составляет 30 св. лет или 30 трлн км. Диаметр Млечного Пути равняется 100 тыс. св. лет.

Солнечная система и межзвездное пространство

Межгалактическое пространство представляет собой области Вселенной, находящиеся вне галактик. Оно лучше всего подходит под определение вакуума, потому что здесь практически отсутствует известная нам материя. На один кубический дециметр приходится всего один атом водорода. Температура этого газа составляет около десяти миллионов градусов.

На данном уровне организации Вселенной расстояния измеряются миллиардами световых лет или миллионами парсеков. Например, размер Местного сверхскопления Девы, куда входит наш Млечный Путь, составляет 200 млн св. лет. А длина Комплекса сверхскоплений Рыб-Кит превышает 1 млрд св. лет. Предел видимости вещества в известной нам Вселенной – 26 млрд св. лет. В этой области находится примерно 500 млрд галактик.

Околоземное космическое пространство

Эта высота определяет границу околоземного космического пространства. Значения космических скоростей даны при отсутствии атмосферы.

Серьезную опасность представляет состояние околоземного космического пространства и прежде всего той его части, которую образует верхняя атмосфера. Запуск ракет, ликвидация орбитальных космических аппаратов с образованием космическою мусора, электромагнитное загрязнение, проникновение загрязняющих веществ из приземной атмосферы нарушают естественные свойства ближнего космоса. Антропогенное воздействие па данное пространство вследствие его интенсивного освоения достигло критического уровня, при котором газовая оболочка Земли утрачивает способность защищать все живое от губительной радиации.

Научное исследование верхних слоев атмосферы и околоземного космического пространства.

Из спутников планет при полетах в околоземном космическом пространстве значительный интерес представляет Луна, являющаяся спутником Земли. Луна обращается по орбите, удаленной примерно на 385000 км от земной поверхности. Диаметр Луны составляет 3478 км.

Зависимость радиационных повреждений в элементах РЭА от интегрального потока протонов.

Наряду с естественными радиационными поясами в околоземном космическом пространстве могут быть образованы искусственные радиационные пояса с мощными потоками электронов, заполняющих основные области магнитосферы Земли.

Зависимость надежности от цикличности работы РЭА. ( Л ц-параметр потока отказов в циклическом режиме, Лн-параметр потока отказов в непрерывном режиме, / — число включений за 1 ч работы.

Суммарная интенсивность прямого солнечного излучения составляет в околоземном космическом пространстве около 1400 Вт / м2, альбедо Земли — 550 Вт / мг.

Возможность применения этих методов для телеметрических определений в околоземном и космическом пространстве делают эти методы особенно ценными в век проникновения человека в космос.

В последней теме нам предстоит взглянуть — словно из околоземного космического пространства — на всю обитель человечества. На пороге XXI столетия это представляет особый интерес. Мировое сообщество вышло на знаменательный исторический рубеж: стало реальным создание на новых основах всемирного хозяйства, на которое опирается планетарная общность людей. Как и почему развилось такое экономическое взаимодействие между странами, все более сближающее их и делающее устойчиво зависимыми друг от друга.

Наблюдаемая интенсивность КЛ на Земле, а также в околоземном космическом пространстве за пределами магнитосферы обнаруживает 11-летние регулярные изменения, причем интенсивность КЛ находится примерно в противофазе с изменением солнечной активности.

Антропогенным воздействием на все слои атмосферы, включая озоновый, засорением околоземного космического пространства отработавшими объектами, ах отделившимися фрагментами и элементами объясняются специфические, объективно присущие ракетной и ракетно-космической технике факторы, которые не могут быть устранены полностью или существ ино снижены без невосполнимых потерь ее целевых качеств и назначения.

Антропогенным воздействием на все слои атмосферы, включая озоновый, засорением околоземного космического пространства отработавшими объектами, их отделившимися фрагментами и элементами объясняются специфические, объективно присущие ракетной и ракетно-космической технике факторы, которые не могут быть устранены полностью или существенно снижены без невосполнимых потерь ее целевых качеств и назначения.

Эти станции были предназначены для комплексного изучения параметров межпланетной среды и околоземного космического пространства, таких как потоки плазмы, магнитное поле, частицы солнечных космических лучей и электромагнитного излучения, связанных между собой и, в какой-то мере, взаимно влияющих друг на друга.

Они предназначены для изучения Земли как планеты, ее верхней атмосферы, околоземного космического пространства, Солнца, звезд и межзвездной среды.

Границы на пути к космосу и пределы дальнего космоса[править | править код]

  • 0,5 км — до этой высоты проживает 80 % человеческого населения мира.
  • 2 км — до этой высоты проживает 99 % населения мира.
  • 5,0 км — 50 % от атмосферного давления на уровне моря.
  • 5,3 км — половина всей массы атмосферы лежит ниже этой высоты (немного ниже вершины горы Эльбрус).
  • 7 км — граница приспособляемости человека к длительному пребыванию в горах.
  • 8,2 км — граница смерти без кислородной маски: даже здоровый и тренированный человек может в любой момент потерять сознание и погибнуть.
  • 8,848 км — высочайшая точка Земли гора Эверест — естественный предел доступности пешком.
  • 9 км — предел приспособляемости к кратковременному дыханию атмосферным воздухом.
  • 12 км — дыхание воздухом эквивалентно пребыванию в космосе (одинаковое время потери сознания ~10—20 с); предел кратковременного дыхания чистым кислородом без дополнительного давления; потолок дозвуковых пассажирских лайнеров.
  • 15 км — дыхание чистым кислородом эквивалентно пребыванию в космосе.
  • 10—18 км — граница между тропосферой и стратосферой на разных широтах (тропопауза). Также это граница подъёма обычных облаков, дальше простирается разрежённый и сухой воздух.
  • 20—22 км — верхняя граница биосферы: предел подъёма в атмосферу живых спор и бактерий воздушными потоками.
  • 25 км — днём можно ориентироваться по ярким звёздам.
  • ок. 35 км — начало космоса для воды или тройная точка воды: на этой высоте атмосферное давление 611,657 Па и вода кипит при 0 °C, а выше не может находиться в жидком виде.
  • 45 км — теоретический предел для прямоточного воздушно-реактивного самолёта.
  • 55 км — атмосфера не воздействует на космическую радиацию.
  • 40—80 км — максимальная ионизация воздуха (превращение воздуха в плазму) от трения о корпус спускаемого аппарата при входе в атмосферу с первой космической скоростью.
  • 80,45 км (50 миль) — официальная высота границы космоса в США.
  • 100 км — зарегистрированная граница атмосферы в 1902 г.: открытие отражающего радиоволны ионизированного 90—120 км.
  • 118 км — переход от атмосферного ветра к потокам заряжённых частиц.
  • 120—130 км — спутник на круговой орбите с такой высотой сможет сделать не более одного оборота.
  • 200 км — наиболее низкая возможная орбита с краткосрочной стабильностью (до нескольких дней).
  • 320 км — зарегистрированная граница атмосферы в 1927 г.: открытие отражающего радиоволны .
  • 350 км — наиболее низкая возможная орбита с долгосрочной стабильностью (до нескольких лет).
  • ок. 400 км — высота орбиты Международной космической станции
  • 500 км — начало внутреннего протонного радиационного пояса и окончание безопасных орбит для длительных полётов человека.
  • 1000—1100 км — максимальная высота полярных сияний, последнее видимое с поверхности Земли проявление атмосферы (но обычно хорошо заметные сияния происходят на высотах 90—400 км).
  • 2000 км — атмосфера не оказывает воздействия на спутники и они могут существовать на орбите многие тысячелетия.
  • 12 756 км — мы удалились на расстояние, равное диаметру планеты Земля.
  • 17 000 км — внешний электронный радиационный пояс.
  • 363 104—405 696 км — высота орбиты Луны над Землёй.
  • 930 000 км — радиус гравитационной сферы Земли и максимальная высота существования её спутников. Выше 930 000 км притяжение Солнца начинает преобладать, и оно будет перетягивать поднявшиеся выше тела.
  • 21 000 000 км — на таком расстоянии практически исчезает гравитационное воздействие Земли на пролетающие объекты.
  • 40 000 000 км — минимальное расстояние от Земли до ближайшей большой планеты Венера.
  • 56 000 000 — 58 000 000 км — минимальное расстояние до Марса во время Великих противостояний.
  • 8 230 000 000 км — дальняя граница пояса Койпера — пояса малых ледяных планет, в который входит карликовая планета Плутон.
  • ок. 300 000 000 000 км (300 млрд км) — ближняя граница облака Хиллса, являющемся внутренней частью облака Оорта — большого, но очень разрежённого скопища ледяных глыб, которые медленно летят по своим орбитам. Изредка выбиваясь из этого облака и приближаясь к Солнцу, они становятся кометами.
  • до 15 000 000 000 000 км — дальность вероятного нахождения гипотетического спутника Солнца звезды Немезида
  • 30 856 776 000 000 км — 1 парсек — более узкопрофессиональная астрономическая единица измерения межзвёздных расстояний, равен 3,2616 светового года.
  • 100 000 000 000 000 км (100 трлн км, ок. 10 св. лет) — в пределах этого радиуса находятся 11 ближайших звёзд.

Советский Союз.

История советских космических программ на протяжении многих лет была окутана покровом секретности, поскольку советское руководство практически всю информацию о ракетах и космических аппаратах рассматривало как государственную тайну и распространяло ее лишь тогда, когда желало продемонстрировать западным странам свои возможности и намерения. Так, запуск «Спутника-1» с помощью межконтинентальной баллистической ракеты Р-7 был в первую очередь демонстрацией того, что СССР способен доставить ядерную боеголовку в любую точку Земли.

В то время как советские конструкторы ракетной техники и ученые, занимавшиеся проблемами космоса, старались осуществить серьезную космическую программу, глава советского государства Н.С.Хрущев использовал деятельность, связанную с космосом, как орудие пропаганды против США и стран Запада. Первый ИСЗ и первый пилотируемый космический корабль, запущенные СССР, были серьезными успехами, но другие космические «первые» достижения раннего периода – такие, как первая женщина в космосе (1963) и многочисленные полеты с участием космонавтов из стран социалистического лагеря, – осуществлялись по прихоти Хрущева и Брежнева и имели в основном пропагандистский характер.

После ряда неудачных попыток, связанных с программой пилотируемых полетов к Луне, СССР в начале 1970-х годов переориентировал свою космическую программу на разработку и эксплуатацию околоземных станций «Салют». СССР провел также обширную программу беспилотных космических полетов, запустив многочисленные АМС к Луне, Венере, Марсу, комете Галлея, а также множество спутников – связных, метеорологических, военных.

Основными космическими центрами СССР являлись Центр по подготовке космонавтов им. Ю.Гагарина в «Звездном городке» под Москвой, Центр управления полетами в подмосковном Калининграде (ныне Королев), Центр связи с дальним космосом под Евпаторией на Украине, а также космодромы в Плесецке, расположенном в 900 км к северу от Москвы (запуск на полярную орбиту), Байконур близ Тюратама в Казахстане (запуск пилотируемых и других крупных КЛА) и в Капустином Яру на Волге ниже Волгограда (первый по времени полигон для испытаний ракет). По всей стране и на морских судах были размещены наземные средства слежения и связи с КЛА.

Разработка советских ракет и КЛА осуществлялась в конструкторских бюро (КБ) и опытно-конструкторских бюро (ОКБ), централизованно подчиненных Министерству общего машиностроения. Централизация обеспечивала советскому руководству более жесткий контроль и исключала дублирование усилий, но одновременно подавляла конкуренцию и приводила к бюрократическим проволочкам. Чтобы устранить трудности, советское правительство в 1970-х годах предприняло некоторые реформы и начало преобразовывать конструкторские бюро в научно-производственные объединения (НПО), но успеха эти преобразования не имели.

КИТАЙСКАЯ НАРОДНАЯ РЕСПУБЛИКА

Космическая программа КНР поначалу была засекречена и ориентирована, казалось бы, лишь на использование космоса в военных целях. Но в 1970-х годах эта страна создала свои коммерческие ракеты-носители «Великий поход-3», которые в 1984 начали конкурировать с западными и советскими ракетами. Кроме того, КНР предлагает всем желающим услуги по запуску возвращаемых спутников.

Общая ответственность за космическую деятельность возложена на министерство космонавтики КНР. Промышленная корпорация «Великая стена» занимается маркетингом и проведением коммерческих запусков. Организация «Китайское спутниковое слежение, телеметрия и управление» осуществляет запуски на трех разных космодромах, расположение которых обеспечивает разный наклон орбиты ИСЗ. Технические услуги предоставляются также Китайской академией космической техники, Шанхайским бюро космонавтики и Шанхайским институтом проектирования спутников.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector