Расстояние от земли до космоса

Искривление пространства и времени как причина относительности

Рядом с таким небольшим объектом, как яблоко, искривление минимально, а явные изменения происходят только в пространстве, окружающем массивные тела.

На фотографии — изображение одного квазара. Его свет, искривляется пространством вблизи массивной черной дыры (посередине) и доходит до нас в виде четырех отдельных пятен. Время рядом с черной дырой будет сильно замедлено. Credit: телескоп «Хаббл», NASA.

Земля своей массой создает гравитационное поле такой силы, что для объектов, находящихся на земной орбите, время проходит медленнее, чем на поверхности планеты.

Наличие временного несоответствия было выявлено при отправке сообщений со спутников на Землю.

Ощутимое пространственно-временное искривление возникает вблизи любых массивных тел — планет, звезд. Это было доказано опытным путем.

Свет квазара, расположенного неподалеку от мощной черной дыры, искривляется, время в той области также замедляется.

Это видно по тем пятнам, которые проявляются для земного наблюдателя через неравные временные периоды.

Радиолокационное исследование ближнего космоса

Центр дальней космической связи в Евпатории

Космические радиолокаторы работают по такому же физическому принципу, что и обычные наземные радиолокаторы, обслуживающие морские суда и самолёты. Радиопередающее устройство планетного радиолокатора генерирует радиоволны, которые направляют на исследуемый космический объект. Отражённые от него эхо-сигналы улавливаются приёмным устройством.

Но из-за огромного расстояния отражённый от космического объекта радиосигнал становится значительно слабее. Поэтому передатчики на планетных радиолокаторах имеют очень большую мощность, антенны — большие размеры, а приёмники — очень высокую чувствительность. Так, например, диаметр зеркала радиоантенны в Центре дальней космической связи под Евпаторией равен 70 м.

Первой планетой, которую исследовали с помощью радиолокации, стала Луна. Кстати, идея послать радиосигнал на Луну, а затем принять его отражение, возникла ещё в 1928 г. и была выдвинута русскими учёными Леони́дом Исаа́ковичем Мандельшта́моми Никола́ем Дми́триевичем Папале́кси. Но технически реализовать её в то время было невозможно.

Леонид Исаакович Мандельштам

Николай Дмитриевич Папалекси

Это удалось сделать в 1946 г. американским и венгерским учёным независимо друг от друга. Радиосигнал, посланный с мощного радиолокатора в сторону Луны, отразился от её поверхности и вернулся на Землю через 2,5 секунды. Этот эксперимент позволил вычислить точное расстояние до Луны. Но вместе с этим по картинке отражённых волн удалось определить и рельеф её поверхности.

В 1959 г. были получены первые сигналы, отражённые от солнечной короны. В 1961 г. сигнал радиолокатора отправился в сторону Венеры. Радиоволны, обладающие высокой проницательностью, проникли сквозь её плотную атмосферу и позволили «увидеть» её поверхность.

Затем было начато исследование Меркурия, Марса, Юпитера и Сатурна. Радиолокация помогла определить размеры планет, параметры их орбит, диаметры и скорость их вращения вокруг Солнца, а также исследовать их поверхности. С помощью РЛС были установлены точные размеры Солнечной системы.

Радиосигналы отражаются не только от поверхностей небесных тел, но и от ионизированных следов метеорных частиц в атмосфере Земли. Чаще всего эти следы появляются на высоте около 100 км. И хотя существуют они от 1 до нескольких секунд, этого достаточно, чтобы с помощью отражённых импульсов определить размер самих частиц, их скорость и направление.

Что такое космос и где он начинается

Слово «космос» возникло в Древней Греции. В переводе оно означало порядок, строй, мир. Вселенная рассматривалась как противоположность хаосу и нагромождению материи. Впоследствии понятие трансформировалось. Современная наука относит к космосу пространство вне газовых оболочек небесных тел. Земной атмосферой считается область вокруг планеты, в которой воздушная среда вращается вместе с Землей как единое целое.

Чтобы определить с научной точки зрения начало космоса, нужно понять, где заканчивается атмосфера.

Первой от земной поверхности расположена тропосфера. Здесь сосредоточено около 80% массы атмосферы. Высота ее колеблется от 8-10 на полюсе до 16-18 км в тропиках.

Тропосфера Земли — первая сфера от поверхности Земли. Credit: NASA Solar System Exploration.

Вторая оболочка носит название стратосфера. Она начинается от 8-16 и заканчивается до 50-55 км от поверхности Земли. В интервале 20-30 проходит озоновый слой, защищающий все живое на планете от агрессивного воздействия ультрафиолетовых лучей. За счет их поглощения озоном происходит нагревание воздуха.

Далее до высоты 80 км простирается мезосфера. С увеличением дистанции температура падает до -90° С.

От нее до уровня 500 км расположена термосфера. Газовый состав термосферы подобен приземному, но кислород переходит в атомарное состояние.

Между слоями атмосферы формируются переходные слои: тропопауза, стратопауза, мезопауза, термопауза.

Самый верхний, наиболее разреженный атмосферный слой, — экзосфера. Она состоит из ионизированного газа (плазмы). Частицы здесь могут свободно удаляться в межпланетное пространство. Масса экзосферы меньше атмосферной в 10 млн раз. Нижняя граница начинается от 450 км над Землей, верхняя достигает нескольких тысяч километров.

Таким образом, исходя из своего научного определения космос начнется в экзосфере, где газовая среда не вращается как единое целое вместе с Землей.

Слои атмосферы Земли. Credit: pages.uoregon.edu.

Важность теории Эйнштейна

Вначале Эйнштейн назвал свою работу «К электродинамике движущихся тел». Теорией относительности она стала позже — когда научный мир, ознакомившийся с ней, сделал выводы, касающиеся «относительного» положения тел в пространстве.

Так, человек, находящийся на борту судна, к примеру на его палубе, бросающий камень по направлению к носовой части, не заметит разницы для себя, если корабль плывет или остается неподвижным. Объясняется феномен тем, что по отношению к кораблю местоположение человека всегда остается неизменным.

За десятилетний период с 1905 по 1915 год Эйнштейн разработал Общую теорию относительности, которая является одной из самых важных теорий в современной физике. Credit: shorts.ru.

От границ атмосферы до пределов Солнечной системы

Межпланетное пространство – область Вселенной, ограниченная орбитой самой дальней планеты, вращающейся вокруг звезды. Понятно, что из многочисленных звездных систем, известных ученым сегодня, наиболее хорошо изучена наша собственная. В центре нашей системы расположено Солнце. Именно его влияние обуславливает свойства межпланетного пространства. Вокруг него вращаются восемь планет: четыре имеют твердую каменистую поверхность, а четыре – являются газовыми гигантами. На наибольшем расстоянии от Солнца находится Нептун, ближе всего к нему Меркурий.

Вот так Земля выглядит с поверхности нашего спутника

Межпланетное пространство простирается до края системы, где переходит в межзвездное. Граница между ними называется гелиопаузой — находится на расстоянии 120-160 а. е. от нашего светила. Плотность среды Солнечной системы очень мала, но не следует считать ее вакуумом – здесь есть пыль, частицы, излучения и плазма. Количество вещества уменьшается при удалении от центра системы.

Важнейшей составляющей межпланетного пространства является солнечный ветер – поток ионизированных частиц, испускаемых Солнцем. Его скорость варьируется от 300 до 800 км/с, температура составляет около 105 °К.

Радиус сферы, где земное притяжение превосходит гравитацию Солнца, распространяется на 260 тыс. км. Точки Лагранжа находятся на удалении в 1,5 млн км, а на расстоянии 21 млн км гравитационное воздействие Земли на пролетающие объекты полностью исчезает.

От Солнца нашу планету отделяет примерно 150 млн км, что составляет одну астрономическую единицу. Расстояние от Солнца до Нептуна – 450 млрд км, что равняется 30 а. е. За ним находятся скопления комет, астероидов и малых планет, которые образуют пояс Койпера и облако Оорта.

До границ гелиосферы будущим космонавтам придется преодолеть 11-14 млрд км. Автоматический аппарат «Вояджер-1» на июнь 2020 года пролетел 35 млрд км или 230 а. е. К концу нынешнего века он удалится на 65 млрд км.

Парсек

Наиболее практичной и удобной для астрономических вычислений является такая единица измерения расстояния как парсек. Чтобы понять ее физический смысл, следует рассмотреть такое явление как параллакс. Его суть состоит в том, что при движении наблюдателя относительно двух отдаленных друг от друга тел, видимое расстояние между этими телами также меняется. В случае со звездами происходит следующее. При движении Земли по своей орбите вокруг Солнца визуальное положение близких к нам звезд несколько меняется, в то время как дальние звезды, выступающие в роли фона, остаются на тех же местах. Изменение положения звезды при смещении Земли на один радиус ее орбиты, называется годичный параллакс, который измеряется в угловых секундах.

Тогда один парсек равен расстоянию до звезды, годичный параллакс которой равен одной угловой секунде – единице измерения угла в астрономии. Отсюда и название «парсек», совмещенное из двух слов: «параллакс» и «секунда». Точное значение парсека равняется 3,0856776·1016 метра или 3,2616 светового года. 1 парсек равен примерно 206 264,8 а. е.

Полет и выход в космос

Корабль «Восход-2» с Алексеем Леоновым (второй пилот) и Павлом Беляевым (командир) стартовал с космодрома Байконур 18 марта 1965 года (10:00 мск). Когда корабль совершал первый виток вокруг Земли, была надута шлюзовая камера, на втором витке начался выход Алексея Леонова в космос. Космонавт пять раз удалялся от корабля на расстояние до 5,35 м. Для подачи кислорода и связи с бортом «Восхода-2» (параметры орбиты — от 167 км до 475 км) использовался страховочный трос.

Выход не обошелся без нештатных ситуаций. Из-за разницы давления скафандр раздулся. Это препятствовало возвращению космонавта в шлюзовую камеру (диаметр люка был критически малым). Поэтому Леонов, рискуя жизнью, вынужден был стравливать в скафандре давление почти до критического (с 0,4 до 0,27 атмосфер). В нарушение инструкции космонавту пришлось входить в шлюзовую камеру головой вперед, а для закрытия за собой люка — переворачиваться в тесном пространстве (из рассказа Алексея Леонова в книге «Мировая пилотируемая космонавтика: История. Техника. Люди», 2005).

Общее время, проведенное Алексеем Леоновым в безвоздушном пространстве, составило 23 мин. 41 сек., из них 12 мин. 9 сек. — за пределами корабля (в свободном полете). На внешней поверхности корабля были установлены две телевизионные камеры, которые передавали изображение на Землю. Кроме того, сам космонавт вел съемку специальной кинокамерой С-97.

Общая продолжительность полета «Восхода-2» составила 1 сутки 2 часа 2 минуты.

80 или 100?

Он сказал, что ученые ранее пытались вычислить линию Кармана еще в 1950-х и начале 1960-х годов. И получили значения, довольно близкие к его значению, которое составило 80 км. Но в конце 1960-х годов оно было установлено на уровне 100 км. Вероятно, как утверждает ученый, это было сделано для того, чтобы было проще использовать в вычислениях красивое круглое число. Это значение выше, чем максимальная высота полета самолетов – около 50 км. По его словам, существует разрыв между высотами, где воздух позволяет летать самолетом, и космосом, где объект может поддерживать стабильную орбиту.

Ограничение для космических объектов не является одинаковым для всех. Потому что более плотные объекты могут проходить через более плотную атмосферу и оставаться на орбите. Перо имеет более высокий предел Кармана, чем шар для боулинга. И есть сезонные и региональные различия в плотности атмосферы. Но 80 км выглядит намного лучше, для американцев, чем 100 км. Однако подобное изменение возрождает с новой силой старый вопрос: кто же первым попал в космос?

Практический пример

Существует доказательство того, что для человека, летящего самолетом, время течет медленнее, чем для людей, которые находятся на Земле в состоянии покоя. Но этой разницы никто не почувствует, ведь она составит не более миллиардной доли секунды.

Ситуация меняется, когда скорость движущегося объекта многократно увеличивается.

Так, ракета, летящая со скоростью света, способна за 1 год преодолеть расстояние, составляющее 100 и более лет по земным меркам. Для самого космонавта, находящегося внутри такой ракеты, минутные стрелки двигались бы так же, как и всегда, — замедление заметили бы только земляне, каким-либо образом увидевшие часы, установленные в кабине корабля.

С другой стороны, космонавт, в этот момент посмотревший из иллюминатора на Землю и увидевший на ее поверхности часы, обратил бы внимание на их замедленный ход. Несмотря на это, в действительности замедление возникает только у космонавта

Это связано с большой скоростью летящей ракеты и тем, что точки отсчета для корабля и планеты остаются неравноправными, ведь Земля постепенно передвигается по прямой траектории, а летательный аппарат перемещается с ускорением

Несмотря на это, в действительности замедление возникает только у космонавта. Это связано с большой скоростью летящей ракеты и тем, что точки отсчета для корабля и планеты остаются неравноправными, ведь Земля постепенно передвигается по прямой траектории, а летательный аппарат перемещается с ускорением.

Основные выводы

Существует 2 основополагающих принципа, вытекающих из Общей теории относительности:

  1. Гравитационные поля создают пространственно-временное искривление.
  2. Для каждого объекта, находящегося в движении, время идет медленнее, чем для того, который остается в покое.

Благодаря релятивистскому замедлению времени для движущихся с ненулевой скоростью объектов любые физические процессы в нем происходят не так быстро, как в статическом положении.

Одним из принципов Теории относительности является пространственно-временное искривление. На схеме видно, как Солнце и другие планеты своей массой, как бы продавливают пространство вокруг себя, изменяя его. Credit: spacetime.ws.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector