Сага о ракетных топливах

Содержание:

4. Применение

Керосин применяют как реактивное топливо, горючий компонент жидкого ракетного топлива, горючее при обжиге стеклянных и фарфоровых изделий, для бытовых нагревательных и осветительных приборов, в аппаратах для резки металлов, как растворитель (например для нанесения пестицидов), сырьё для нефтеперерабатывающей промышленности. Керосин может использоваться как заменитель зимнего и арктического дизтоплива для дизельных двигателей, однако необходимо добавить противоизносные и цетаноповышающие присадки; цетановое число керосина около 40, ГОСТ требует не менее 45. Для многотопливных двигателей (на основе дизеля) возможно применение чистого керосина и даже бензина АИ-80. Допускается добавление до 20 % керосина в летнее дизельное топливо для снижения температуры застывания, при этом не ухудшаются эксплуатационные характеристики. Также керосин — основное топливо для проведения фаершоу (огненных представлений), из-за хорошей впитываемости и относительно низкой температуры горения. Применяется так же для промывки механизмов, для удаления ржавчины.

4.1. Авиационный керосин

Авиационный керосин, или авиакеросин, служит в турбовинтовых и турбореактивных двигателях летательных аппаратов не только топливом, но также хладагентом и применяется для смазывания деталей топливных систем. Поэтому он должен обладать хорошими противоизносными (характеризуют уменьшение изнашивания трущихся поверхностей в присутствии топлива) и низкотемпературными свойствами, высокой термоокислительной стабильностью и большой удельной теплотой сгорания.

4.2. Ракетное топливо

Керосин применяется в ракетной технике в качестве углеводородного горючего и одновременно рабочего тела гидромашин. Использование керосина в ракетных двигателях было предложено Циолковским в 1914 году. В паре с жидким кислородом используется на нижних ступенях многих РН: отечественных — «Союз», «Молния», «Зенит», «Энергия»; американских — серий «Дельта» и «Атлас». Для повышения плотности, и, тем самым, эффективности ракетной системы, топливо часто переохлаждают. В СССР в ряде случаев использовался синтетический заменитель керосина, синтин, позволявший поднять эффективность работы двигателя, разработанного под керосин, без существенных изменений в конструкции. В перспективе предполагается замена керосина на более эффективные углеводородные горючие — метан, этан, пропан и т. п.

4.3. Технический керосин

Технический керосин используют как сырьё для пиролитического получения этилена, пропилена и ароматических углеводородов, в качестве топлива в основном при обжиге стеклянных и фарфоровых изделий, как растворитель при промывке механизмов и деталей. Деароматизированный путём глубокого гидрирования керосин (содержит не более 7 % ароматических углеводородов) — растворитель в производстве ПВХ полимеризацией в растворе. В керосин, используемый в моечных машинах, для предупреждения накопления зарядов статического электричества добавляют присадки, содержащие соли магния и хрома. В России нормы на технический керосин задаются ГОСТ 18499-73 «Керосин для технических целей»

4.4. Осветительный керосин

Керосин такого типа в основном применяют в керосиновых или в калильных лампах, а также в качестве топлива и растворителя. Качество такого керосина в лампах определяется в основном высотой некоптящего пламени. Существенное влияние на ВНП оказывает само качество и состав керосина. Улучшению качеств керосина может содействовать гидроочистка.

4.4.1. Характеристики осветительного керосина

Нормы характеристик осветительных керосинов в России задаются стандартами ГОСТ 11128-65 «Керосин осветительный из сернистых нефтей» и ГОСТ 4753-68 «Керосин осветительный», по последнему стандарту показатели следующие:

Показатель КО-30 КО-25 КО-22 КО-20
Плотн., (при 20 °C), г/см3, не более 0,790 0,805 0,805 0,830
Фракционный состав, °C выкипает, % по объему, не менее
20 200
25 200 200
80 270
Конец кипения, не выше 280 300 280 310
Т. вспышки, °C, не ниже 48 40 40 40
Т. помутнения, °C, не выше −15 −15 −15 −12
Содержание S, % по массе, не более 0,003 0,003 0,003 0,003
Кислотное число, не более 1,3 1,3 1,3 1,3

Определения

Отношение количества окислителя к количеству топлива в процессе сжигания или в горючей смеси топливо — окислитель измеряют либо в виде отношения масс, либо в отношении объёмов, либо в отношении количества молей. Соответственно, различают массовое L 0 , {\displaystyle L_{0},} , объёмное L V {\displaystyle L_{V}} и молярное L M {\displaystyle L_{M}} отношения:

L 0 = m o m f , {\displaystyle L_{0}={\frac {m_{o}}{m_{f}}},} L V = V o V f , {\displaystyle L_{V}={\frac {V_{o}}{V_{f}}},} L M = M o M f , {\displaystyle L_{M}={\frac {M_{o}}{M_{f}}},} где m o , m f {\displaystyle m_{o},\ m_{f}} — массы окислителя и топлива; V o , V f {\displaystyle V_{o},\ V_{f}} — объёмы окислителя и топлива; M o , M f {\displaystyle M_{o},\ M_{f}} — молярное количество окислителя и топлива (число молей).

Для газообразных смесей топлива и окислителя в соответствии с законом Авогадро L M = L V . {\displaystyle L_{M}=L_{V}.}

Если в процессе химической реакции горения в продуктах горения не будет ни свободного окислителя, ни несгоревшего топлива, то такое соотношение топлива и окислителя называют стехиометрическим.

Например, реакция горения водорода в кислороде со стехиометрическими коэффициентами:

2 H 2 + O 2 ⟶ 2 H 2 O {\displaystyle {\ce {2H2 + O2 -> 2H2O}}} .

В этой реакции в продуктах горения (в правой части уравнения) нет ни горючего, ни окислителя, причём на 2 моля водорода требуется 1 моль кислорода, или, по закону Авогадро, на 2 объёма водорода 1 объём кислорода, или на 4 г водорода 32 г кислорода, то есть, при полном сгорании водорода без избытка кислорода: L V s t = L M s t = 1 / 2 = 0 , 5 , {\displaystyle L_{Vst}=L_{Mst}=1/2=0,5,} L 0 s t = 32 / 4 = 8. {\displaystyle L_{0st}=32/4=8.} Эти численные значения называют стехиометрическими отношениями.

Стехиометрические отношения зависят от вида топлива и окислителя, например, в реакции горения метана в кислороде:

CH 4 + 2 O 2 ⟶ CO 2 + 2 H 2 O {\displaystyle {\ce {CH4 + 2O2 -> CO2 + 2H2O}}} L V s t = L M s t = 2 , {\displaystyle L_{Vst}=L_{Mst}=2,} L 0 s t = 64 / 16 = 4. {\displaystyle L_{0st}=64/16=4.}

Коэффициентом избытка окислителя называют отношение фактического отношения окислитель/топливо к стехиометрическому:

α = L 0 / L 0 s t = L V / L V s t = L M / L M s t , {\displaystyle \alpha =L_{0}/L_{0st}=L_{V}/L_{Vst}=L_{M}/L_{Mst},}

причём α {\displaystyle \alpha } не зависит в каком виде определено отношение окислитель/топливо масоовом, молярном или объёмном. Очевидно, что при стехиометрическом отношении окислитель/топливо α = 1. {\displaystyle \alpha =1.}

Смеси топливо/окислитель у которых α < 1 {\displaystyle \alpha <1} называют богатыми смесями, а α > 1 {\displaystyle \alpha >1} — бедными.

В зарубежной научно-технической литературе коэффициент избытка окислителя обычно обозначают буквой λ . {\displaystyle \lambda .}

Также используется параметр, называемый коэффициентом избытка топлива

ϕ = 1 / α , {\displaystyle \phi =1/\alpha ,} величина, обратная к коэффициенту избытка окислителя.

История

Нефтеперегонный куб братьев Дубининых

Нефтеперегонные устройства конца XIX века

Керосиновый завод в Баку, 1890 год

Очередь за керосином. Москва, 1920-е годы

До середины XIX века для освещения сжигали всевозможные жиры или светильный газ. Однако жиры давали меньше света, больше копоти, неприятно пахли, оставляли большой нагар и засоряли лампы отложениями. Промышленная добыча китовой ворвани для осветительных целей привела к катастрофическому уменьшению поголовья китов. Светильный газ был неудобен и не получил значительного распространения. Появление керосина оценили по достоинству, и он быстро вытеснил жиры.

Сведения о дистилляции нефти начинаются с X века н. э. Однако широкого применения продукты дистилляции не находили, несмотря на сведения об использовании нефти в масляных лампах. В 1733 году врач Иоганн Лерхе, посетив бакинские нефтепромыслы, записал наблюдения о перегонке нефти:

В 1746 году рудознатец Ф. С. Прядунов поставил нефтеперегонный завод на реке Ухте на естественном источнике нефти. Однако удалённость от цивилизации затруднила работу завода, который не смог обеспечить прибыльность и четверть века спустя был заброшен. В 1823 году крепостные крестьяне братья Дубинины построили нефтеперегонный куб на Северном Кавказе, недалеко от Моздока, возле аула Акки-Юрт. Это предприятие проработало более 20 лет, поставляя несколько сот пудов продуктов перегонки нефти в год для аптечных и осветительных целей. По видимому, это первая промышленная установка перегонки нефти, сведения об устройстве которой дошли до наших дней. Получавшиеся при этом бензин и мазут имели крайне ограниченное применение. Например, бензин применялся в аптекарских и ветеринарных целях, а также в качестве бытового растворителя, и поэтому большие его запасы нефтепромышленники попросту выжигали в ямах или сливали в водоёмы. Мазут ограниченно применяли как заменитель угля в паровых машинах, а также для получения смазочных масел.

Начало массовому промышленному использованию светлых нефтепродуктов в освещении было положено в 1840-х — 1850-х годах. Разными людьми было продемонстрировано получение из угля, битума, нефти светлой малопахучей горючей жидкости путём нагрева этих веществ и отгонки продуктов. Был получен ряд патентов.

Название «керосин» предложил канадский физик и геолог , в 1846 году продемонстрировавший полученное нагреванием угля осветительное масло, не дававшее копоти. Метод Геснера не позволял получить дешёвый продукт, но дал толчок дальнейшим исследованиям.

В 1851 году вступила в строй первая промышленная перегонная установка в Англии.

В 1853 году во Львове И. Лукасевичем и Я. Зехом была изобретена безопасная керосиновая лампа. В 1854 году была зарегистрирована торговая марка «керосин». Начался процесс трансформации масляных ламп в керосиновую лампу.
Именно развитие керосинового освещения в середине XIX века привело к повышению спроса на нефть и к развитию способов её добычи. С этого момента начинается бурное развитие керосинового промысла, потянувшее за собой нефтедобычу. В 1857 году Василий Кокорев в Сураханах близ Баку построил нефтеперегонный завод начальной мощностью 100 тыс. пудов керосина в год. К концу века в России производили уже около 100 млн пудов керосина в год.

В дореволюционной России керосин входил в состав денежно-натуральной формы заработка заводских рабочих.

Востребованность керосина в быту в конце XIX — начале XX веков повысилась в связи с появлением приборов для приготовления пищи — примуса и керосинки. На территории России и СССР последняя, заменив дровяные плиты, пользовалась популярностью с середины 1920-х годов до конца 1950-х.

В начале XX века керосин уступил своё лидирующее положение на мировом рынке нефтепродуктов бензину из-за распространения двигателей внутреннего сгорания и электрического освещения. Вновь значение керосина начало возрастать только с 1950-х годах, ввиду развития реактивной и турбовинтовой авиации, для которой именно этот вид нефтепродуктов (авиакеросин) оказался практически идеальным топливом.

Горючие

Основные характеристики двухкомпонентных ЖРТ при pк/pа=7/0,1 МПадва серьёзных недостатканизкая стойкость личного состава к «отравлению»Группа углеводородов.КеросинА ведь находятся люди, которые им что только ни лечат!Pthirus pubis авария пассажирского самолётаСинтез синтина.Мухин, Велюров @Co.Керосиновые двигатели наиболее освоены в СССР.«Где делают самые лучшие ракетные двигатели в мире»Теперь более корректным названием для горючих на основе керосина стал термин УВГ-«углеводородное горючее», т.к. от керосина, который жгли в безопасных керосиновых лампах И. Лукасевича и Я. Зеха, применяемое УВГ «ушло» очень далеко.нафтилНизкомолекулярные углеводородыМетанНПО «Энергомаш»РД-0120Водород

Особенно эффективен с сопловым насадком из материала «Граурис».

Процесс горения

  1. Стадия инертного прогрева;
  2. Стадия разложения компонентов топлива;
  3. Стадия химического взаимодействия газообразных окисл. горючих элементов. При этом взаимодействии выделяется большое количества тепла.

Все эти процессы протекают одновременно и практически не разделены на пространственные зоны у поверхности горящей шашки. Высокое содержание в продуктах сгорания ТРТ твёрдых частиц снижает влияние давления на скорость горения шашки. Для уменьшения влияния случайных перепадов давления и начальной температуры на скорость горения шашки и колебания тяги, используют катализаторы горения ТРТ. Чаще всего в качестве катализаторов горения выступают минеральные или органические соединения переходных металлов. Например: оксид железа, оксид хрома, бихромат свинца, оксид свинца, карбонат свинца, ферроцен, трис-ацетилацетонаты кобальта и хрома и др. Эти добавки вносят в составы баллиститных ТРТ и СТТ, чаще всего, в количестве 1-5 %.

В любом случае, повышение давления в области горения шашки приводит к некоторому увеличению скорости горения. При некоторых условиях это может привести к разрушению корпуса РДТТ. Высокие температуры также могут приводить к размягчению некоторых баллиститных топлив и изменению их формы в корпусе РДТТ. При запуске такого РДТТ происходит разрушение шашки и закупорка критического сечения сопла.

Факторы, влияющие на величину скорости горения:

  • Фракционный размер частиц окислителя и металлического горючего
  • Состав топлива
  • Влияние начальной температуры
  • Влияние давления в камере сгорания
  • Влияние технологических добавок
  • Влияние скорости газового потока, обдувающего горящую поверхность топлива.

Понятие

Ракетное топливо — одно или более высокоэнергетических веществ питания ракетного двигателя для создания им тяги. С развитием ракетной техники идет развитие новых видов ракетных двигателей, например, ядерных ракетных двигателей. Ракетное топливо может быть химическим (жидким и твёрдым), ядерным, термоядерным.

Жидкое химическое ракетное топливо состоит из двух компонентов: окислителя и горючего, которые находятся в ракете в жидком состоянии в разных баках. Смешивание их происходит в камере сгорания жидкостного ракетного двигателя, обычно с помощью форсунок. Давление компонентов топлива создается за счет работы турбонасосной или вытеснительной системы, в работе которых также могут участвовать компоненты топливной пары. Кроме того, компоненты топлива используются для охлаждения сопла жидкостного ракетного двигателя.

Также применяются так называемые ракетные монотоплива, в которых и окислителем и восстановителем является одно и то же вещество. При работе ракетного двигателя на монотопливе происходит химическая реакция самоокисления-самовосстановления с участием катализаторов, либо двигатель работает только за счёт фазового перехода вещества монотоплива, например из жидкого состояния в газообразное.

Твёрдое ракетное топливо тоже состоит из окислителя и горючего, но они находятся в виде смеси твёрдых веществ.

Экологи разошлись в оценке угрозы населению при взрыве «Протона» на Байконуре

Общероссийская организация «Зеленый патруль» уверена, что авария ракеты-носителя «Протон-М», на борту которой было до 600 тонн горючего, не представляет угрозы для населения, в то время как союз «За химическую безопасность» считает необходимым для местных жителей отказаться от использования воды из колодцев, передается в сообщении РИА Новости, которое цитирует ИА Новости-Казахстан.

Ракета-носитель «Протон-М», стартовавшая утром во вторник с Байконура, упала на 17-й секунде после старта и взорвалась на территории космодрома примерно в 60 километрах от города Байконур. По официальным сообщениям, жертв и разрушений в районе падения ракеты со спутниками нет. Ядовитое облако, образовавшееся из компонента сгоревшего ракетного топлива гептила, не дойдет до населенных пунктов Казахстана, заявили ранее эксперты.

«На Байконуре нет трансграничных перемещений водных потоков. Все концентрируется на одной поверхности с одним артезианским колодцем. Ожидать, что загрязнение уйдет, было бы неправильно. Сама география места спасает от широкого распространения загрязнения. Есть опасность воздушного загрязнения, но окрестные территории достаточно безлюдные, что правильно предусмотрено. В грунтовых водах многое отфильтруется, к людям дойдет очень небольшая концентрация», — сказал  директор природоохранных программ «Зеленого патруля» Роман Пукалов.

По словам эксперта, дождь во время старта ракеты сыграл ключевую роль в обезвреживании опасного облака, образовавшегося после взрыва. Осадки не допустили воздушного переноса ядовитых веществ на большое расстояние, чего можно было ожидать, поскольку ракета взорвалась на 17-й секунде после старта.

«Панику поднимать не нужно, но мониторинг надо вести очень жесткий — то есть это как минимум сто на сто километров», — заявил Пукалов.

В то же время эксперт по токсичным и ядовитым веществам союза «За химическую безопасность» Дмитрий Левашов сообщил, что ракетное топливо гептил относится к веществам первого класса опасности, или самым токсичным, а также имеет свойство накапливаться в организме человека. Поэтому, чтобы обезопаситься, местным жителям стоит в ближайшие несколько дней пить бутилированную воду или воду из водопровода, отказаться от использования дождевой воды для полива садов и огородов, несколько дней не пользоваться колодцами.

«Повод для беспокойства есть, но не такой, как если бы взрыв произошел при запуске или в первые секунды. В этой ситуации наибольшую опасность представляют атмосферные осадки. Первое, не стоит принимать солнечные ванны, не купаться день-два, может, действительно, пить бутилированную воду или из централизованного водоснабжения, но не из колодцев», — сказал Левашов.

Эксперт также считает, что осадки в районе Байконура помогут смягчить воздействие ядовитых веществ.

Гептил обладает сильным токсическим действием. Наиболее опасным источником отравления является вдыхание паров. По запаху можно обнаружить в воздухе концентрацию паров, которая в 50 раз выше допустимой. Действие на организм человека: раздражение слизистых оболочек глаз, дыхательных путей и легких; сильное возбуждение центральной нервной системы; расстройство кишечно-желудочного тракта (тошнота, рвота). Попадание брызг в глаза может вызвать мгновенную боль, слезотечение и покраснение (конъюнктивит). При вдыхании паров возможен кашель, боли в грудной клетке, хрипота и учащение дыхания; в больших концентрациях может наступить потеря сознания.

4759 просмотров

Поделиться этой публикацией в соцсетях:

Горючие

Основные характеристики двухкомпонентных ЖРТ при pк/pа=7/0,1 МПадва серьёзных недостатканизкая стойкость личного состава к «отравлению»Группа углеводородов.КеросинА ведь находятся люди, которые им что только ни лечат!Pthirus pubis авария пассажирского самолётаСинтез синтина.Мухин, Велюров @Co.Керосиновые двигатели наиболее освоены в СССР.«Где делают самые лучшие ракетные двигатели в мире»Теперь более корректным названием для горючих на основе керосина стал термин УВГ-«углеводородное горючее», т.к. от керосина, который жгли в безопасных керосиновых лампах И. Лукасевича и Я. Зеха, применяемое УВГ «ушло» очень далеко.нафтилНизкомолекулярные углеводородыМетанНПО «Энергомаш»РД-0120Водород

Особенно эффективен с сопловым насадком из материала «Граурис».

Состав и свойства

Образцы свежеприготовленного топлива, слева — базовый состав, справа — с добавлением 1 % оксида железа (III)

Базовый, наиболее изученный и часто используемый состав — 65 % КNО3 и 35 % сорбита (по массе). Такой состав близок к оптимуму по достижимому удельному импульсу при небольших степенях расширения, характерных для модельных РДТТ. Умеренный показатель степени в законе горения делает топливо пригодным для работы в широком диапазоне давлений, и, как следствие, подходящим для кустарно изготавливаемых РДТТ с заметным разбросом геометрических характеристик.

Готовое топливо состоит из твёрдого раствора селитры в сорбите и взвешенных в нём мелкодисперсных частиц нерастворившейся селитры. Температура плавления готового топлива значительно ниже, чем исходных компонентов. Растворимость селитры в сорбите в твёрдом виде гораздо меньше, чем в расплаве, поэтому топливо при остывании набирает прочность постепенно, так как по объёму идёт выделение кристаллов из твёрдого раствора, при этом выделяется некоторое количество тепла. Крупные шашки остаются мягкими более суток.

Энергетические характеристики данного состава очень умеренные. Теоретический удельный импульс карамельного топлива на нитрате калия — 153 кгс×с/кг, а практически достижимый не превышает 125 кгс×с/кг. Это меньше, чем у дешёвых баллиститных топлив на основе нитроцеллюлозы, поэтому промышленно этот состав не применяется. Однако, это существенно больше, чем у дымного пороха, к тому же, изготовление карамельного топлива не требует специфического оборудования, необходимого для производства пороха, поэтому популярно у изготовителей модельных ракетных двигателей, как кустарных, так и серийных коммерческих.

При замене в составе топлива сорбита на сахарозу скорость горения возрастает довольно значительно, на 40 % при атмосферном давлении, но другие свойства топлива (плотность, удельный импульс, показатель степени в законе горения и т. д.) почти не меняются. Главный недостаток сахарозного состава — гораздо более опасный процесс приготовления, так как требуется более сильный нагрев сахарозы.

Окислители.

Кислород.

На фото: створки защитных устройств заправочного автостыка керосина (ЗУ-2), за 2 минуты до окончания циклограммы при выполнении операции ЗАКРЫТЬ ЗУ из-за обледенения не полностью закрылись. Одновременно из-за обледенения не прошел сигнал о съезде ТУА с пусковой установки. Пуск проведен на следующий день.
Агрегат-заправщик РБ жидким кислородом снят с колес и установлен на фундаменте.

Пофантазируйте: вместо Н2О представьте ЖК (LOX).ОзонДавно инженеры мучились с ним, пытаясь использовать в качестве высокоэнергетического и вместе с тем экологически чистого окислителя в ракетной технике.
Общая химическая энергия, освобождающаяся при реакции сгорания с участием озона, больше, чем для простого кислорода, примерно на одну четверть (719 ккал/кг). Больше будет, соответственно, и Iуд. У жидкого озона большая плотность, чем у жидкого кислорода (1,35 против 1,14 г/см³ соответственно), а его Ткипения выше (−112 °C и −183 °C соответственно).
Пока непреодолимым препятствием является химическая неустойчивость и взрывоопасность жидкого озона с разложением его на O и O2, при котором возникает движущаяся со скоростью около 2 км/с детонационная волна и развивается разрушающее детонационное давление более 3·107 дин/см2 (3 МПа), что делает применение жидкого озона невозможным при нынешнем уровне техники, за исключением использования устойчивых кислород-озоновых смесей (до 24 % озона). Преимуществом подобной смеси также является больший удельный импульс для водородных двигателей, по сравнению с озон-водородными. На сегодняшний день такие высокоэффективные двигатели, как РД-170, РД-180, РД-191, а также разгонные вакуумные двигатели вышли по Iуд на близкие к предельным значениям параметры и для повышения УИ осталось лишь одна возможность, связанная с переходом на новые виды топлива.
Азотная кислотаHNO3 имеет высокую плотность, невысокую стоимость, производится в больших количествах, достаточно стабильна, в том числе при высоких температурах, пожаро- и взрывобезопасная. Главное ее преимущество перед жидким кислородом в высокой температуре кипения, а следовательно в возможности неограниченно долго храниться без всякой теплоизоляции. Молекула азотной кислоты HNO3 – почти идеальный окислитель. Она содержит в качестве “балласта” атом азота и “половинку” молекулы воды, а два с половиной атома кислорода можно использовать для окисления топлива. Но не тут-то было! Азотная кислота настолько агрессивное вещество, что непрерывно реагирует само с собой–атомы водорода отщепляются от одной молекулы кислоты и присоединяются к соседним, образуя непрочные, но чрезвычайно химически активные агрегаты. Даже самые стойкие сорта нержавеющей стали медленно разрушаются концентрированной азотной кислотой (в результате на дне бака образовывался густой зеленоватый «кисель», смесь солей металлов). Для уменьшения коррозионной активности в азотную кислоту стали добавлять различные вещества, всего 0,5% плавиковой (фтористоводородной) кислоты уменьшают скорость коррозии нержавеющей стали в десять раз.
Интересный факт: Советские рубли были почти на 95 % сделаны из этого сплава. Азотный тетраоксидФтор «флюор»F2-Be (бериллий)-порядка 6000 м/с! Супер? Облом, а не «супер»…Стартовая позиция после запуска такого «энергичного движка»? Фтороводородный ЖРД тягой 25 т для оснащения обеих ступеней ракетного ускорителя АКС «Спираль» предполагалось разработать в ОКБ-456 В.П.Глушко на базе отработанного ЖРД тягой 10 т на фтороаммиачном (F2+NH3) топливе.Перекись водорода

Walter HWK 109-507: преимущества в простоте конструкции ЖРД. Яркий пример такого топлива-перекись водорода.

Перекись водорода для роскошных волос и еще 14 секретов применения.О4

Примечание: если хотите перевести один вариант удельного импульса в другой, то можно пользоваться простой формулой: 1 м/с = 9,81 с.

«завались»

Типы

Химические ракетные топлива

  • Твёрдые.

    • Нитроцеллюлоза
    • Нитроглицерин, динитрогликоль и другие труднолетучие растворители
    • Черный порох
    • Карамельное ракетное топливо
    • Смесевое ракетное топливо
    • Металлы как горючее
    • Карбиды, нитриды, азиды и амиды металлов
    • Гидриды металлов
    • Сложные гидриды
    • Перхлораты металлов
  • Жидкие:

    • Нитрометан
    • Изопропилнитрат
    • Керосин
    • Перекись водорода
    • Гидразин
    • Метилгидразин
    • Несимметричный диметилгидразин (НДМГ, гептил)
    • Металлоорганические соединения
    • Гидриды азота
    • Органические амины
    • Спирты
    • Нефтепродукты
    • Углеводороды
    • Органические окиси
    • Растворы металлов
    • Бороводороды
    • Водород

Окислители для жидких видов топлива

    • Фтор
    • Кислород
    • Озон
    • Фториды кислорода
    • Неорганические фториды азота
    • Фториды галогенов
    • Перхлорилфторид
    • Оксиды азота
    • Азотнокислотные окислители
    • Перекись водорода
    • Соединения инертных газов
    • Пероксиды, надпероксиды и неорганические озониды
    • Неорганические нитраты
    • Органические нитросоединения и эфиры азотной кислоты (алкилнитраты)
    • Хлорная кислота
    • Перхлораты неметаллов
    • Тетраоксид диазота (АТ, Амил)
  • Гелеобразное.
  • Гибридное.

Чем опасен для биосферы

Тестирование гептила как топлива для межконтинентальных космических ракет в Советском Союзе началось с 1949 года. Он и сегодня используется для ракет-носителей семейства «Протон».

При запуске таких носителей отработанные ступени (первая и вторая), где находятся резервы топлива, сбрасываются в районы падения (специальные малонаселенные территории). А это порядка 500 килограммов топлива. С 2003 года сброс этот происходит на большой высоте, и топливо подвергается окислению кислородом с полным разложением до простых веществ.

Но при приземлении и дальнейшем разрушении этих объектов происходит локальное загрязнение почвы гептилом. А в почве уже образуется ядовитый нитрозодиметиламин. И далее он может попадать в грунтовые воды.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector