На твердой тяге

Двигатели из патронов

Та же закономерность работала и в любительском ракетостроении — выше летала ракета, у которой был более мощный двигатель. Несмотря на то что первые ракетомодельные двигатели появились в СССР еще до войны, в 1938 году, Евгений Букш, автор вышедшей в 1972 году книги «Основы ракетного моделизма», взял за основу такого двигателя картонную гильзу охотничьего патрона. Мощность определялась калибром исходной гильзы, а производились двигатели двумя пиротехническими мастерскими ДОСААФ вплоть до 1974 года, когда было принято решение об организации в стране ракетомодельного спорта. Для участия в международных соревнованиях потребовались двигатели, подходящие по своим параметрам под требования международной федерации.

Их разработка была поручена Пермскому НИИ полимерных материалов. Вскоре была выпущена опытная партия, на основе которой и начал развиваться советский ракетомодельный спорт. С 1982 года с перебоями заработало серийное производство двигателей на государственном казенном заводе «Импульс» в украинской Шостке — в год выпускали 200−250 тысяч экземпляров. Несмотря на жесткий дефицит таких двигателей, это был период расцвета советского любительского модельного ракетостроения, который закончился в 1990 году одновременно с закрытием производства в Шостке.

Тяга

Понятием тяга обозначается «сила» ракетного двигателя. Тяга измеряется в «фунтах тяги» (США, 4,45 ньютона = 1 фунт тяги) и в ньютонах в метрической схеме. Фунт тяги – это количество тяги, которое требуется для удержания одного фунтового объекта (0,454 кг) неподвижным относительно силы тяжести планеты Земля. Ускорение земной гравитации – 9,8 метров в секунд.

Одна из проблем ракет заключается в том, что топливный вес, обычно, в 36 раз больше полезной нагрузки. Потому что, кроме того, что двигателю необходимо поднимать вес, этот же вес и способствует собственному подъему. Получается, чтобы вывести в космос крошечного человека, потребуется ракета огромных размеров и много-много топлива.

Скорость химических ракет – от 8 до 16 тыс. километров в час. Топливо горит около 2 минут и вырабатывает на старте около 3,3 млн фунтов тяги. Три главных двигателя космического шатлла, к примеру, сжигают топливо на протяжении 8 мин и вырабатывают приблизительно 375 фунтов тяжи каждый во время горения.

Дальше мы поговорим о топливных смесях для твердотопливных ракет.

Двигатели ракеты на твердом топливе – это самые первые модификации, созданные человеком. Впервые они были изобретены в Китае сотни лет назад и их успешно применяют по сегодняшний день. О красных бликах ракет поется даже в национальном гимне, который был написан в начале 1800-х годов). Речь идет о небольших боевых ракетах, работающих на твердом топливе. Они применяются для доставки зажигательных устройств или бомб. Как видите, эти ракеты существуют уже довольно давно.

Идея ракеты на твердом топливе достаточно простая. Вам необходимо создать нечто, чтобы могло быстро гореть, но в то же время не взрываться. В таком случае, порох не подходит (он состоит на 75% из нитрата, 10% серы и 15% угля). В двигателе ракеты взрывы не нужны – необходимо, чтобы горело топливо. Можно изменить смесь до 24% угля, 72% нитрата и 4% серы. Вместо пороха у вас получится ракетное топливо. Такая смесь будет быстро гореть, но она не взрывоопасна, если, конечно, ее правильно загрузить. Приведем классическую схему:

Слева – ракета до зажигания. Твердое топливо показано зеленым цветом. Оно выполнено в виде цилиндра с трубой, которая просверлена по центру. При зажигании горюче начинает сгорать вдоль стенки трубы. Постепенно, по мере сгорания, оно выгорает к корпуса, пока полностью не сгорит. В крошечной ракете или в небольшом ракетном двигателе процесс горения может продолжаться около секунды или даже меньше. В большой ракете топливо будет гореть не меньше двух минут.

Боевое крещение

Так в ГДЛ объединились оба ракетных направления: твердотопливное и жидкостное. И в том и в другом сотрудники лаборатории достигли немалых успехов, но сферы применения ракет оказались различны. В апреле 1930 года Тихомиров умирает, а через несколько месяцев после смерти изобретателя был получен патент на твёрдое ракетное топливо — его выдали уже Народному комиссариату военно-морских сил РККА. ГДЛ возглавил Борис Петропавловский, который вместе с Лангемаком сформулировал идею лёгких и мобильных реактивных систем на основе миномётов, которые должны были заменить малоподвижную артиллерию.

Уже осенью 1930 года в ГДЛ закончили проект и подготовили чертежи 82-мм и 132-мм ракетных орудий и реактивных снарядов. В следующем году ГДЛ создаёт модели снарядов и пусковых устройств, а также начинает испытание по боевому применению снарядов РС-82 и PC-182 на самолётах И-4 и Р-5. 

  • Боевая машина реактивной артиллерии БМ-13Н

В 1932 году с целью централизации усилий по разработке ракетных технологий ГДЛ передали Артиллерийскому НИИ артиллерийского управления РККА, тогда же ГДЛ начала разработку ручного ракетного противотанкового ружья.

В то же время в США шла разработка знаменитой базуки, основанной на аналогичных принципах. К сожалению, разработки советских изобретателей в этом направлении оказались малоэффективными, и работы по этому проекту были свёрнуты. В результате Красная армия вступила во Вторую мировую войну, не имея столь эффективного противотанкового оружия и пользуясь либо поставками по ленд-лизу американских базук, либо трофейными немецкими фаустпатронами.

С 1931 года ракетными технологиями также занималась «Группа изучения реактивного движения» при Осоавиахиме во главе с Фридрихом Цандером и Сергеем Королёвым. Распылять средства по нескольким направлениям было сочтено нецелесообразным, и осенью 1933 года ГДЛ и ГИРД объединились в первый в мире Реактивный институт.

Особенности строения и работы порохового двигателя

Пороховой двигатель самолета часто называют ракетным двигателем твердого топлива, сокращенно РДТТ. При работе таких двигателей используется объединение окислителя и твердого топлива в единую массу. Все это находится непосредственно в камере сгорания, а не в дополнительных топливных баках, как в жидкостных моделях. Кроме облегчения конструкции, она становится более надежной и простой, поскольку исключается система подачи горючего. Самым простым и ярким примером такой конструкции является обычная пороховая ракета.

Прежде всего, стоит отметить, что применение РДТТ в авиации необходимо для достижения определенных задач. Конечно же, основная задача, которую решают дополнительные пороховые двигатели, – это значительное увеличение тяговооруженности самолета на определенном этапе полета. В большинстве случаев это необходимо при взлете. Не всегда существуют отличные условия для взлета и нормального разбега самолета. Особо актуально это было во времена поршневой авиации и на первых этапах развития реактивных установок на жидком топливе. Это позволяло значительно сократить дистанцию разбега летательного средства. Подобный быстрый старт помогал избежать плотного обстрела орудий противника. Также были модели истребителей, которые использовали пороховые ускорители для быстрого достижения воздушной цели противника. Повышение тяговооруженности в определенный экстремальный момент полета позволяет решать боевые задачи более легко и эффективно.

Исторические данные об использовании пороховых двигателей.

Первые зафиксированные данные об использовании пороха в качестве ускорителя датируются 960 годом. В это время китайцы изготовляли первые пороховые ракеты для военных целей. Очень часто упоминаются в легендах и сказаниях использования пороховых зарядов для осуществления полетов. Так, одна из легенд повествовала о попытке полета Ван Гу на летательном аппарате, заряженном 47 ракетами с порохом.

В 1540 году была напечатана книга «О пиротехнике» автора Ванноччо Бирингуччо. Уже в это время была предоставлена первая схема строения пороховой ракеты с одной и несколькими ступенями. Все же огромное количество писателей-фантастов тех времен использовали свои скромные знания о ракетостроении и пороховых двигателях для возможности их героев попасть в отдаленные уголки планеты или даже на Луну.

Более реальное проектирование и создание действительно успешных пороховых двигателей началось с 19 века. Так, в 1817 году англичанин У. Конгрева смог изготовить ракету с дальностью полета в 2,7 километра. Параллельно с этим российские конструкторы И. Картмазов и А. Засядько изготовили свой прототип, который смог пролететь 2,69 километра. Дальнейшие наработки в данной отрасли позволили достичь еще лучших показателей. В 1881 году отечественный конструктор и исследователь Н. Кибальчич работал над изготовлением пилотируемого летательного аппарата с пороховым двигателем. Еще через 5 лет А. Эвальд провел комплекс опытов с моделью самолета на пороховом заряде.

Конечно же, прорывом стали разработки М. Поморцева, который в 1902 году изготовил ракету с пороховым двигателем. Ее особенностью являются стабилизирующие поверхности на корпусе и более продуманная конструкция двигателя. Все это позволило достичь дальности полета в 9 километров.

В создании пороховых двигателей не отставали и германские конструкторы. Так в 20-х годах прошлого века достаточно известный конструктор автомобилей Фриц фон Опель использовал пороховые заряды для ускорения велосипеда и мотоцикла, после чего провел опыты и с автомобилем. В апреле 1928 года конструктор установил на гоночную модель автомобиля Opel-Rak 12 ракет с твердым топливом. Данный ускоритель позволил достичь скорости в 112 км/час. В мае этого же года на автомобиль установили 24-зарядный блок ракет, который разогнал машину до скорости 200 км/час.

После проведенных опытов Ф. Опель начал проводить тестирование пороховых двигателей на летательных аппаратах. Был создан самолет-ракетоплан под названием Opel RК 22 в 1928 году. Параллельно с этим А. Липпше создал подобную летающую машину под названием «Утка», она смогла за одну минуту пролететь 1,2 километра на пороховом ускорителе. Что касается аппарата Опеля, то он смог достичь скорости 152 км/час в полете. Через год, а именно в октябре 1929 года, провел испытания своего летающего агрегата конструктор Г. Эспенлауб. Ракетоплан был оснащен 15 ракетными зарядами, которые смогли поднять машину в воздух, но во время полета летательный аппарат загорелся.

Что касается разработок СССР в данной отрасли, то они активно начались с 30-х годов. Удалось построить самолет, в котором использовались пороховые заряды в качестве дополнительных, он имел название У-1. Тестирование прошло отлично, после чего решили установить подобные ускорители на бомбардировщике типа ТБ-1. Для качественного разгона было установлено по 3 пороховых заряда с каждой стороны корпуса аппарата. Стоит отметить, что масса всего комплекта ускорителей составляла только 60 килограмм. При этом в течение двух секунд работы они выдавали тягу в 10 400 кгс. Данной мощности было достаточно для того, чтобы 7-тонный бомбардировщик смог сократить свой разбег при взлете от 330 метров к 80 метрам.

Подобные испытания были проведены и на советских истребителях в 1935 году. Несмотря на получение огромной тяги, подобные установки так и не получили широкого применения в авиастроении.

Во времена Второй мировой войны пороховые ускорители для своих самолетов широко использовала Япония и Германия. Кроме того, во время ухудшения состояния этих стран под конец войны ими были проведены разработки ударных самолетов, которые использовали твердотопливный двигатель в качестве основной силовой установки самолетов. На основе таких проектов были созданы самолеты для самоубийственных миссий по кораблям. Такие самолеты широко использовала Япония, наиболее ярким примером является аппарат «Ока».

Все дальнейшие разработки только улучшили показатели дальности и точности полета. Все же в большинстве случаев пороховые двигатели больше использовали и используют для строения ракет, нежели в авиации. Хотя подобные ускорительные установки с твердым топливом оказали немалую помощь в самолетостроении.

Применение

Космонавтика

Твердотопливные ступени никогда не использовались в советской и российской космонавтике, однако широко применялись и применяются в ракетной технике других стран. В основном это элементы первой ступени (боковые ускорители):

  • Боковой ускоритель МТКК Спейс шаттл и Space Launch System.
  • Вторая ступень Наро-1 (Республика Корея), Антарес (США).
  • Семейство твердотопливных ступеней Castor (англ.)русск. и в любительском ракетостроении.

Боевые ракеты

Баллистические ракеты подводных лодок
  • UGM-27 «Поларис» (1960)
  • UGM-73 «Посейдон» (1970)
  • UGM-96 «Трайдент» (1979)
  • M1 (1972)
  • M20 (1976)
  • M45 (1996)
  • M51
  • Р-39 (1983)
  • Р-30 «Булава»
Межконтинентальные баллистические ракеты
  • LGM-30 «Минитмен» (1962)
  • MX «Пискипер» (1986)
  • РТ-23 УТТХ «Молодец»(1987)
  • РТ-2ПМ «Тополь» (1982)
  • РТ-2ПМ2 «Тополь-М» (1998)
  • РС-24 «Ярс» (2009)
  • РС-26 «Рубеж» (2017)
Противоракеты системы ПВО

LIM-49A «Спартен»

ПЗРК

Игла

В моделизме

В ракетомоделировании используется 2 типа двигателей на твёрдом топливе. Первые — на основе дымного пороха (в Америке такие двигатели имеются в свободной продаже). Но обычно используют расплав или смесь калийной селитры (или реже натриевой селитры) и углеводов (сахар, сорбит и декстроза) — это т. н. «карамель», она изготовляется самостоятельно. Ракетные двигатели обычно имеют сопло, но иногда делают и бессопловые двигатели. Их обычно изготовляют из картонных гильз для охотничьих ружей, в качестве сопла используется отверстие для капсюля.

Назад в будущее

Ситуация, можно сказать, вернулась в 1930-е годы. В отличие от других видов модельного спорта, где недостаток отечественных двигателей и прочих комплектующих можно компенсировать импортом, в ракетомодельном спорте это не проходит. У нас ракетомодельные двигатели приравниваются к взрывчатым веществам, со всеми вытекающими условиями по хранению, транспортировке и провозе через границу. Не родился еще на земле русской человек, способный наладить импорт таких изделий.

Выход один — производство на родине, благо технология тут вовсе не космическая. Но заводы, имеющие лицензии на производство таких изделий, за них не берутся — им этот бизнес был бы интересен лишь при миллионных тиражах. Вот и вынуждены начинающие ракетомоделисты из крупнейшей космической державы летать на карамельных ракетах. Тогда как в Соединенных Штатах сейчас стали появляться уже многоразовые модельные ракетные двигатели, работающие на гибридном топливе: закись азота плюс твердое горючее. Как вы думаете, какая страна лет через тридцать полетит к Марсу?

Статья опубликована в журнале «Популярная механика»
(№3, Март 2008).

История

Ранние китайские ракеты

Первые пороховые ракеты были изобретены в Китае. Точная дата их изобретения неизвестна (первое письменное упоминание относится к XIII веку). Эти ракеты были твердотопливными.

В Средние века ракеты применялись в основном для развлечений, для устройства фейерверков.
Интерес к ракетам начал расти в 1920-е — 1930-е годы, поскольку стало ясно, что ракетный принцип движения является единственным для осуществления самостоятельного, управляемого полёта в безвоздушном пространстве[источник не указан 592 дня].

Обладая сравнительно невысоким удельным импульсом (в сравнении с электрическими, ионными, плазменными ракетными двигателями), химические ракетные двигатели развивают бо́льшую тягу, что важно при создании средств выведения полезной нагрузки на космическую орбиту, или для осуществления не слишком дальних межпланетных полётов за относительно короткое время.

По состоянию на середину 2010-х годов все создающие основную тягу ракетные двигатели, применяемые в ракетах военного назначения и ракетах-носителях космических аппаратов, являются химическими. Исключение составляют различные корректирующие двигатели и двигатели ориентации. При этом в химических двигателях уже достигнут принципиальный предел энергетических возможностей топлива. Даже теоретически нет возможности существенного увеличения их удельного импульса, что связано с принципиальным ограничением температуры продуктов горения в экзотермических химических реакциях, что ограничивает максимальную скорость истечения газов. Это накладывает ограничения на возможности ракетной техники с использованием химических двигателей уже освоенными двумя направлениями:

  • космические полёты в околоземном пространстве (как пилотируемые, так и беспилотные);
  • исследование космоса в пределах Солнечной системы с помощью автоматических аппаратов (например, космические аппараты серий «Венера» и «Марс», Вояджер, Галилео, Кассини-Гюйгенс, Улисс).

Если кратковременная пилотируемая экспедиция к Марсу или Венере с использованием химических двигателей ещё представляется технически реализуемой, то для пилотируемых полётов путешествия к более далёким объектам Солнечной системы размеры необходимой для этого ракеты и длительность полёта трудно осуществимы с точки зрения современной науки и техники.

«В глубине береговой черты»

«Бал» предназначен для защиты военно-морской инфраструктуры, обороны побережья на десантно-опасных направлениях и контроля территориальных вод и проливных зон. Машины комплекса размещены на шасси высокой проходимости МЗКТ-7930, позволяющих занимать огневые позиции на неподготовленных участках побережья.

По информации КТРВ, пусковые установки и транспортно-перегрузочные машины «Бала» могут размещаться «на скрытых позициях в глубине береговой черты». В свою очередь, командный пункт берегового ракетного комплекса обеспечивает разведку, целеуказание и распределение поражаемых объектов между ПУ.

  • Пусковая установка БРК «Бал»

«Наличие в составе комплекса активных и пассивных высокоточных каналов радиолокационного обнаружения целей позволяет осуществлять гибкую стратегию обнаружения целей, в том числе скрытного», — уточняется в материалах корпорации.

Помимо радаров, «Бал» оснащён навигационной аппаратурой, приборами ночного видения, средствами топографической привязки и ориентирования, которые позволяют быстро менять позицию после ракетного пуска и уходить на новый огневой рубеж. Время развёртывания комплекса составляет 10 минут.

«Бал» может вести стрельбу как одиночно, так и массированными залпами до 32 ракет. Отстрел такого количества боеприпасов способен нанести серьёзный урон крупной корабельной ударной группе и десантному подразделению противника. Данные о целях БРК может получать в том числе от внешних командных пунктов и внешних разведывательных средств.

Также по теме


«Существенно усилит потенциал надводных сил»: на что будет способен обновлённый крейсер «Адмирал Нахимов»

Атомный ракетный крейсер «Адмирал Нахимов» проекта 1144.2 вернётся в состав ВМФ в 2022 году. Об этом рассказал глава Объединённой…

«Наличие в составе комплекса ТПМ (транспортно-перегрузочных машин. — RT) позволяет через 30—40 минут произвести повторный залп. Система боевого управления средствами комплекса реализована с применением цифровых методов передачи всех видов сообщений, использования систем автоматизированной связи, обработки сообщений, засекречивания информации с гарантированной стойкостью», — отмечается на сайте КТРВ.

Кроме того, «Бал» имеет большой модернизационный потенциал. В частности, как говорят инженеры КТРВ, он может быть обновлён посредством монтажа комплексов постановки пассивных помех, «что существенно повысит неуязвимость комплекса в дуэльных ситуациях с управляемым оружием противника».

Опрошенные RT эксперты назвали «Бал» современным высокоэффективным средством береговой обороны. К главным преимуществам комплекса аналитики отнесли помехозащищённость, всепогодность, ударные возможности, скрытность и манёвренность.

Аналогичную мысль выразил главный редактор журнала «Национальная оборона» Игорь Коротченко. В комментарии RT специалист подчеркнул, что «Бал» — это высокомобильное и чрезвычайно опасное для потенциального противника оружие. По его словам, российский БРК способен «гарантированно уничтожить любую цель» в морской акватории.

«Бал» может быть оперативно развёрнут в разных районах побережья и стать надёжным средством защиты от носителей высокоточного ударного вооружения. Например, данный комплекс позволяет держать под контролем военно-морскую активность стран НАТО в черноморском регионе, включая передвижение американских эсминцев», — заявил Коротченко.

  • Пуск ракеты БРК «Бал» береговых войск Балтийского флота

Суммарный боекомплект «Бала» может достигать 64 боеприпасов. Для поражения целей используется отечественная противокорабельная ракета Х-35 и её усовершенствованная версия с максимальной дальностью стрельбы в 260 км. Боеприпас был разработан в стенах ГНПЦ «Звезда-Стрела» (Королёв) для уничтожения катеров, корветов, фрегатов и эсминцев.

Как отметили эксперты, модернизированная версия Х-35 мощнее, имеет улучшенную электронику и отличается незначительными конструктивными особенностями.

«Х-35У оснащена более мощной боевой частью и новой радиолокационной головкой самонаведения, которая повысила точность попадания и улучшила селекцию целей», — рассказал Мураховский.

К ключевому достоинству семейства Х-35 аналитики относят малогабаритный турбореактивный двигатель и специальный пороховой ускоритель, которые придают ракете мощный стартовый импульс. Большую часть пути боеприпас летит на высоте несколько метров, а на финальном этапе совершает подскок для последующей атаки.

При этом специалисты КТРВ считают важным преимуществом Х-35 скромные финансовые расходы на эксплуатацию и ремонт, когда аналогичные ракеты входят в арсенал ВВС и кораблей ближней морской зоны с комплексом «Уран».

Из истории данного вопроса

Ракетный двигатель – один из старейших видов двигателя, известных человечеству. Мы не можем точно ответить на вопрос, когда именно была изготовлена первая ракета. Есть предположение, что это сделали еще древние греки (деревянный голубь Архита Тарентского), но большинство историков считает родиной данного изобретения Китай. Это произошло примерно в III столетии нашей эры, вскоре после открытия пороха. Первоначально ракеты использовали для фейерверков и других развлечений. Пороховой ракетный двигатель был достаточно эффективен и прост в изготовлении.

Первая боевая ракета была разработана в 1556 году Конрадом Хаасом, который придумывал различные виды вооружений для императора Фердинанда I. Этого изобретателя можно назвать первым создателем теории ракетных двигателей, также он является автором идеи многоступенчатой ракеты – в трудах Хааса подробно описан механизм работы летательного аппарата, состоящего из двух ракет. Изыскания продолжил поляк Казимир Семенович, живший в середине XVII века. Однако все эти проекты так и остались на бумаге.

Практическое использование ракет началось только в XIX столетии. В 1805 году британский офицер Уильям Конгрив продемонстрировал пороховые ракеты, которые имели небывалую по тем временам мощность. Презентация произвела должное впечатление, и ракеты Конгрива были приняты на вооружение английской армии. Их главным преимуществом, по сравнению со ствольной артиллерией, была высокая мобильность и относительно небольшая стоимость, а основным недостатком – кучность огня, которая оставляла желать лучшего. К концу XIX века широкое распространение получили нарезные орудия, стрелявшие очень точно, поэтому ракеты были сняты с вооружения.

Примерно так использовались ракеты Конгрива. Современная реконструкция

В России данным вопросом занимался генерал Засядко. Он не только усовершенствовал ракеты Конгрива, но и первым предложил использовать их для полета в космос. В 1881 году российский изобретатель Кибальчич создал собственную теорию ракетных двигателей.

Огромный вклад в развитие этого направления техники внес еще один наш соотечественник – Константин Циолковский. Среди его идей жидкостный ракетный двигатель (ЖРД), работающий на смеси кислорода и водорода.

В начале прошлого столетия энтузиасты во многих странах мира занимались созданием жидкостного РД, первым добился успеха американский изобретатель Роберт Годдард. Его ракета, работающая на смеси бензина и жидкого кислорода, успешно стартовала в 1926 году.

Вторая мировая война стала периодом возвращения ракетного оружия. В 1941 году на вооружение Красной армии была принята установка залпового огня БМ-13 – знаменитая «Катюша», а в 1943 – немцы начали использование баллистической Фау-2 с жидкостным ракетным двигателем. Она была разработана под руководством  Вернера фон Брауна, который позже возглавил американскую космическую программу. Германией также было освоено производство КР Фау-1 с прямоточными реактивным мотором.

Ракета Фау-2. Немцы называли ее «оружие возмездия». Правда, оно не слишком помогло Гитлеру

В разные годы предпринимались попытки создания ракетных двигателей, работающих за счет энергии ядерного распада (синтеза), но до практического применения подобных силовых установок дело так и не дошло. В 70-е годы в СССР и США началось использование электрических ракетных двигателей. Сегодня они применяются для коррекции орбит и курса космических аппаратов. В 70-е и 80-е годы были эксперименты с плазменными РД, считается, что они имеют хороший потенциал. Большие надежды связывают с ионными ракетными двигателями, использование которых теоретически может значительно ускорить космические аппараты.

Однако пока почти все эти технологии находятся в зачаточном состоянии, и основным транспортным средством покорителей космоса остается старая добрая «химическая» ракета. В настоящее время за титул «самый мощный ракетный двигатель в мире» соревнуется американский F-1, участвовавший в лунном проекте, и советский РД-170/171, который использовался в программе «Энергия-Буран».

От ракет Конгрива до «Катюш»

Результаты концентрации усилий не замедлили проявиться. К 1936 году работы по жидкостным ракетным двигателями завершились созданием ОРМ-65. К этому двигателю была создана крылатая ракета «212», которая совершила первый полёт 29 января 1939 года. Конструкторами ракеты и двигателя были Королёв и Глушко. Это была первая советская управляемая ракета современного типа. Именно с модели «212» начался путь человека в космос.

Изрядные успехи были достигнуты и в сфере твердотопливных реактивных снарядов. В 1937 году Советская армия приняла на вооружение доработанные снаряды РС-82 и РС-132, используемые в авиации. Уже в 1939 году эти снаряды нашли боевое применение в сражении на Халхин-Голе, где истребители-ракетоносцы сбили два японских самолёта.

  • Сбитый японский самолёт во время боёв на Халхин-Голе

С началом Великой Отечественной войны выяснилось, что реактивные снаряды плохо пригодны для маневренного воздушного боя, зато чрезвычайно эффективны при массовом применении, что доказали ещё ракеты Конгрива в начале XIX века.

К сожалению, политика террора 1937—1938 годов коснулась и учёных-ракетчиков. Был арестован Лангемак, которого вскоре расстреляли, Глушко и Королёв также оказались в заключении и до 1944 года работали в тюремных шарашках.

В 1939 году в Реактивном институте начались работы по созданию наземных мобильных реактивных миномётов. На базе уже созданных авиационных снарядов были разработаны модели Р-8 и Р-13 — именно ими вооружили знаменитые «Катюши» моделей БМ-8 и БМ-13, боевое применение которых доказало высокую эффективность ракетных технологий и сыграло важную роль в победе над фашистской Германией.

Так скромный и незаметный эксперимент 3 марта 1928 года стал началом стремительного развития реактивной техники.

Топливо

Основная статья: Твёрдое ракетное топливо

  • Гомогенные топлива. Представляют собой твёрдые растворы (обычно — нитроцеллюлозы) в нелетучем растворителе (обычно в нитроглицерине). Применяются в небольших ракетах.
  • Смесевые топлива. Это смесь твёрдых окислителя и горючего. Наиболее значимы:
    • Дымный порох. Исторически первое ракетное топливо. Состав: селитра, древесный уголь и сера.
    • Смесевые топлива на основе перхлората аммония (окислитель) и полимерного горючего. Наиболее широко применяемое топливо для тяжелых ракет военного и космического назначения.
    • В ракетомоделизме получило широкое распространение самодельное смесевое топливо на основе нитрата калия и органических связующих, доступных в быту (сорбит, сахар и тому подобных).

Топливо РДТТ американских межконтинентальных ракет состояло из смеси на основе перхлората аммония в качестве окислителя и горючего полиуретана с алюминием (первая ступень), с присадками (связующего НТРВ (англ. Hydroxyl Terminated Poly Butadien — полибутадиена с концевой гидроксильной группой), улучшающими стабильность скорости горения, формование и хранения заряда и смесью на основе перхлората аммония в качестве окислителя и горючего полиуретана в смеси с сополимером полибутадиена и акриловой кислоты (вторая ступень).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector