Классификация опасных грузов

Скорость детонации

От скорости детонации взрывчатого вещества зависит скорость процесса взрывчатого превращения, а следовательно, и время, в течение которого выделяется вся энергия, заключенная во взрывчатом веществе. А это вместе с количеством тепла, выделившегося при взрыве, характеризует мощность, развиваемую взрывом; следовательно, даст возможность правильно выбрать взрывчатое вещество для выполнения тон или иной механической работы.

Для перебивания, например, металла, целесообразнее получить возможный максимум энергии в наикратчайший промежуток времени, тогда как для выброса грунта из пределов заданной выемки (воронки) эту же энергию лучше получить за более длительный отрезок времени, подобно тому как при нанесении резкого удара по доске можно ее перебить, а приложив ту же энергию постепенно только сдвинуть (отбросить).

Скорость детонации для одного и того же взрывчатого вещества может быть различной и зависит:

— от химического состава и структуры молекулы;

— от плотности взрывчатого вещества 

Влияние плотности взрывчатого вещества на скорость его детонации следующая

Плотность, г/см3                                                             1.0         1.3           1.4             1.5            1.6

Тротил                                                                              4720      6025        6315         6610         6960

Гексоген флегматизированный 5% парафина     —           6875        7315         7600         7995

— от диаметра массы взрывчатого вещества, который должен быть не менее критического; однако при  увеличении диаметра ВВ выше критического и до величины, называемой предельным диаметром, скорость детонации постепенно возрастет; дальнейшее увеличение диаметра уже не сказывается на скорости детонации.

3 Общие требования

3.1 Классификация ВВ, а также изделий на основе ВВ и условия их применения приведены в таблицах 1 и 2.Таблица 1 — Классы и виды ВВ, изделий на основе ВВ и условия применения

Класс ВВ

Вид ВВ

Условие применения

I

Непредохранительные ВВ

Для взрывания только на земной поверхности

II

Непредохранительные ВВ

Для взрывания на земной поверхности и в забоях подземных выработок, в которых либо отсутствует выделение горючих газов или взрывчатой угольной (сланцевой) пыли, либо применяется инертизация призабойного пространства, исключающая воспламенение взрывоопасной среды при взрывных работах

III

Предохранительные ВВ

Для взрывания только по породе в забоях подземных выработок, в которых имеется выделение горючих газов, но отсутствует взрывчатая угольная (сланцевая) пыль

IV

Предохранительные ВВ

Для взрывания:- по углю и/или породе или горючим сланцам в забоях подземных выработок, опасных по взрыву угольной (сланцевой) пыли при отсутствии выделения горючих газов;- по углю и/или породе в забоях подземных выработок, проводимых по угольному пласту, в которых имеется выделение горючих газов, кроме выработок с повышенным выделением горючих газов;- для сотрясательного взрывания в забоях подземных угольных шахт

V

Предохранительные ВВ

Для взрывания по углю и/или породе в выработках с повышенным выделением горючих газов, проводимых по угольному пласту, когда исключен контакт боковой поверхности шпурового заряда с газовоздушной смесью, находящейся либо в пересекающих шпур трещинах массива горных пород, либо в выработке

VI

Предохранительные ВВ

Для взрывания:- по углю и/или породе в выработках с повышенным выделением горючих газов, проводимых в условиях, когда возможен контакт боковой поверхности шпурового заряда с газовоздушной смесью, находящейся либо в пересекающих шпур трещинах горного массива, либо в выработке;- в угольных и смешанных забоях восстающих (с углом более 10°) выработок, в которых выделяется горючий газ, при длине выработок более 20 м и проведении их без предварительно пробуренных скважин, обеспечивающих проветривание за счет общешахтной депрессии

VII

Предохранительные ВВ и изделия на основе предохранительных ВВ V-VI классов

Для ведения специальных взрывных работ (водораспыление и распыление порошкообразных ингибиторов, взрывное перебивание деревянных стоек при посадке кровли, ликвидация зависания горной массы в углеперепускных выработках, дробление негабаритов) в забоях подземных выработок, в которых возможно образование взрывоопасной концентрации горючего газа и угольной пыли

Специальный (С)

Непредохранительные и предохранительные ВВ и изделия на их основе

Для ведения специальных взрывных работ, кроме забоев подземных выработок, в которых возможно образование взрывоопасной концентрации горючего газа и угольной (сланцевой) пыли

Таблица 2 — Группы ВВ специального класса (изделия на их основе) и условия применения

Группа ВВ специального класса

Условие применения

1

Взрывные работы на земной поверхности: импульсная обработка металлов; инициирование скважинных и других сосредоточенных зарядов; контурное взрывание для заоткоски уступов; разрушение мерзлых грунтов; дробление негабаритных кусков горной массы; сейсморазведочные работы в скважинах; создание заградительных полос при локализации лесных пожаров, другие специальные работы

2

Взрывные работы в забоях подземных выработок, не опасных по газу и/или угольной (сланцевой) пыли; взрывание сульфидных руд; дробление негабаритных кусков горной массы; контурное взрывание и другие специальные работы

3

Прострелочно-взрывные работы в разведочных, нефтяных, газовых скважинах

4

Взрывные работы в серных, нефтяных и др. шахтах, опасных по взрыву серной пыли, водорода и паров тяжелых углеводородов

3.2 В зависимости от класса ВВ, группы ВВ специального класса, а также изделий на основе ВВ и условий их применения оболочки патронов (пачек) или отличительные полосы, наносимые на патроны (пачки), изделия, ящики или мешки, должны иметь цвета, которые приведены в таблицах А.1 и А.2 (см. приложение А).

4 группа — промежуточные детонаторы для инициирования малочувствительных ВВ

К промежуточным детонаторам относятся: тротиловые шашки Т-400, Ш-400, ТГ-500, Тет-150, ПТ-150, ПТ-300, которые используются для надежного инициирования детонации зарядов малочувствительных ВВ.

Тротиловые шашки  рекомендуются для инициирования сухих и влажных скважинных и камерных зарядов игданита, гранулитов, граммонитов и других ВВ. Шашки с большей инициирующей способностью (ТГ-500, Тет-150, ПТ-150, ПТ-300) предназначаются для инициирования обводненных зарядов гранулотола, алюмотола, граммонитов и водонаполненных акватолов.

Основные технические характеристики промежуточных детонаторов для инициирования малочувствительных ВВ приведены в табл. 6.

Таблица 6.

Основные характеристики промежуточных детонаторов

для инициирования малочувствительных ВВ

Показатели

Т-400 (тротил)

Т-400 (тротил)

ТГ-50 (тротил, гексоген)

Тет-150 (тетрил)

ПТ-150 (пентолит)

ПТ-300 (пентолит)

Масса шашки, г

400÷20

500÷30

150÷7

300÷7

Плотность, г/см3

1,5-1,59

1,58-1,64

1,53-1,62

1,58-1,64

1,64-1,68

Удельная энергия, ккал/кг

1030

1028

1200

1090

1280

Скорость детонации, км/с

6,4-7

6,2-6,8

7,2-7,8

7,0-7,5

7,8-8,2

Давление детонационной волны, кгс/см2*103

159-199

143-189

209-225

192-231

230-243

220-240

Номинальный размер шашки, мм:

диаметр

70

51

70

50

50

60

высота

70

101

83

50

50

65

Диаметр отверстия, мм

14,5÷0,5

7,8÷8,2*

14,5-0,5

6-6,1

6-6,1

6-6,1

Резюме

К водоустойчивым относятся такие ВВ как Гранулотол, Алюмотол, Граммонит 50/50 и Граммонит 30/70, которые применяются в крепких и весьма крепких горных породах, а также в обводненных условиях при производстве взрывов.  Отличительной полосой, вышеперечисленных ВВ является белый цвет. 

Отличительной особенностью водонаполненных ВВ является наличие воды в их составе (6-15%) в виде концентрированного раствора аммиачной селитры, который превращает смесь в высокоплотную суспензию, сравнительно безопасную в применении. К водонаполненным ВВ относятся: акватолы, ифзаниты и карбатолы. Акватолы марок 65/35 С и М-15 (металлизированный) предназначены для взрывания крепких и весьма крепких горных пород, а также в обводненных условиях.

В настоящее время, горной промышленностью Республики Узбекистан, выпускаются следующие эмульсионные ВВ: Нобелит 20/30, Гранэмиты 30/70 и 50/50, которые весьма успешно используются для производства взрывных работ крепких и весьма крепких горных пород, а также в сложных гидрогеологических условиях.

К кумулятивным зарядам относятся: ЗКП (заряд кумулятивный поверхностный) и ЗКН (заряд кумулятивный наружный), которые применяются для вторичного дробления негабаритных кусков горных пород на открытых горных работах.

К промежуточным детонаторам относятся: тротиловые шашки Т-400, Ш-400, ТГ-500, Тет-150, ПТ-150, ПТ-300, которые используются для надежного инициирования детонации зарядов малочувствительных ВВ.

Физическая природа взрывного превращения

Взрывное превращение, как правило, носит кратковременный характер, протекает при температурах от 2500 до 4500 K и сопровождается выделением огромного количества высокотемпературных газов и тепла. Взрывная реакция не требует наличия в окружающем воздухе окислителя (в качестве которого обычно выступает кислород), поскольку он содержится в химически связанном виде в ингредиентах взрывчатки.

Стоит отметить, что суммарное количество энергии, которая высвобождается при взрыве, относительно невелико и обычно в пять или шесть раз меньше теплотворной способности нефтепродуктов аналогичной массы. Тем не менее, несмотря на скромную энергетическую отдачу, огромная скорость реакции, которая по закону Аррениуса является следствием большой температуры, обеспечивает достижение высоких значений мощности.

Высвобождение большого количества газообразных продуктов сгорания считается другим признаком химической реакции в виде взрыва. При этом, стремительная трансформация взрывчатого вещества в высокотемпературные газы сопровождается скачкообразным изменением давления (до 10—30 ГПа), которое носит название ударной волны. Распространение этой волны способствует передаче энергии от одного слоя взрывчатки к другому и сопровождается возбуждением в новых слоях аналогичной химической реакции. Этот процесс получил название детонации, а инициирующая его ударная волна стала называться детонационной волной.

Существует ряд веществ, способных к нехимическому взрыву (например, ядерные и термоядерные материалы, антивещество). Также существуют методы воздействия на различные вещества, приводящие к взрыву (например, лазером или электрической дугой). Обычно такие вещества не называют «взрывчатыми».

Начало в жидком виде

История современных взрывчатых веществ начинается в 1846 году, когда итальянский ученый Асканио Собреро впервые получил нитроглицерин — сложный эфир глицерина и азотной кислоты. Собреро достаточно быстро обнаружил взрывчатые свойства бесцветной вязкой жидкости и потому поначалу назвал полученное соединение пироглицерином.

Альфред Нобель — человек, создавший динамит.
Трехмерная модель молекулы нитроглицерина.

По современным представлениям нитроглицерин — весьма посредственная взрывчатка. В жидком состоянии он слишком чувствителен к удару и нагреву, а в твердом (охлажденном до 13°С) — к трению. Фугасность и бризантность нитроглицерина сильно зависят от способа инициирования, а при использовании слабого детонатора мощность взрыва сравнительно невелика. Но тогда это было прорывом — мир еще не знал подобных веществ.

Практическое использование нитроглицерина началось лишь спустя семнадцать лет. В 1863 году шведский инженер Альфред Нобель конструирует пороховой капсюль-воспламенитель, позволяющий использовать нитроглицерин в горном деле. Спустя еще два года, в 1865 году, Нобель создает первый полноценный капсюль-детонатор, содержащий фульминат ртути. При помощи такого детонатора можно инициировать практически любое бризантное взрывчатое вещество и вызвать полноценный взрыв.

В 1867 году появляется первая взрывчатка, пригодная для безопасного хранения и транспортировки, — динамит. Девять лет потребовалось Нобелю на то, чтобы довести технологию производства динамита до совершенства — в 1876 году был запатентован раствор нитроцеллюлозы в нитроглицерине (или «гремучий студень»), который до сегодняшнего дня считается одним из самых мощных взрывчатых веществ бризантного действия. Именно из этого состава готовился знаменитый динамит Нобеля.

Выдающийся химик и инженер Альфред Нобель, фактически изменивший лицо мира и давший реальный толчок развитию современной военной и, косвенно, космической технике скончался в 1896 году, прожив 63 года. Имея слабое здоровье, он так увлекался работой, что часто забывал поесть. На каждом из его заводов строилась лаборатория, чтобы неожиданно приехавший хозяин мог продолжить эксперименты без малейшей задержки. Он был и генеральным директором своих заводов, и главным бухгалтером, и главным инженером и технологом, и секретарем. Жажда познания была основной чертой его характера: «Вещи, над которыми я работаю, действительно чудовищны, но они так интересны, так совершенны технически, что становятся привлекательными вдвойне».

Основные свойства ВВ

Главными из них являются:

  • температура продуктов взрыва;
  • теплота взрыва;
  • скорость детонации;
  • бризантность;
  • фугасность.

На последних двух пунктах следует остановиться отдельно. Бризантность ВВ – это его способность разрушать прилегающую к нему среду (горную породу, металл, дерево). Данная характеристика во многом зависит от физического состояния, в котором находится взрывчатка (степень измельчения, плотность, однородность). Бризантность напрямую зависит от скорости детонации взрывчатого вещества — чем она выше, тем лучше ВВ может дробить и разрушать окружающие предметы.

  • Повышенной мощности: гексоген, тетрил, оксоген;
  • Средней мощности: тротил, мелинит, пластид;
  • Пониженной мощности: ВВ на основе аммиачной селитры.

Не менее важным свойством взрывчатых веществ является его фугасность. Это самая общая характеристика любого ВВ, она показывает насколько та или иная взрывчатка обладает разрушающей способностью. Фугасность напрямую зависит от количества газов, которые образовываются при взрыве. Следует отметить, что бризантность и фугасность, как правило, не связаны между собой.

Существует общепринятый способ определения мощности различных взрывчатых веществ. Это так называемый тротиловый эквивалент, когда мощность тротила условно принимается за единицу. Используя этот способ можно высчитать, что мощность 125 гр тротила равна 100 гр гексогена и 150 гр аммонита.

Чтобы лучше показать, насколько важна эта характеристика взрывчатого вещества, можно сказать, что американцы разработали специальный стандарт (STANAG 4439) для чувствительности взрывчатых веществ. И на это им пришлось пойти не от хорошей жизни, а после череды тяжелейших несчастных случаев: при подрыве на американской базе ВВС «Бьен-Хо» во Вьетнаме погибли 33 человека, вследствие взрывов на авианосце «Форрестол» были повреждены около 80 самолетов, а также после детонации авиаракет на авианосце «Орискани» (1966 год). Так что хороша не просто мощная взрывчатка, а детонирующая именно в нужный момент — и никогда больше.

Все современные ВВ – это либо химические соединения, либо механические смеси. К первой группе относятся гексоген, тротил, нитроглицерин, пикриновая кислота. Химические взрывчатые вещества, как правило, получают нитрованием различных видов углеводородов, что приводит к введению в их молекулы азота и кислорода. Ко второй группе – аммиачно-селитренные ВВ. В состав взрывчатых веществ подобного типа обычно входят вещества, богатые кислородом и углеродом. Для повышения температуры взрыва в смеси часто добавляют порошки металлов: алюминия, бериллия, магния.

Кроме всех вышеперечисленных свойств, любое взрывчатое вещество должно быть химически стойким и пригодным для длительного хранения. В 80-х годах прошлого века китайцы сумели синтезировать мощнейшую взрывчатку – трициклическую мочевину. Ее мощность превосходила тротил в двадцать раз. Проблема была в том, что через несколько дней после изготовления вещество разлагалось и превращалось в слизь, непригодную для дальнейшего использования.

Классификация взрывчатых веществ

По своим взрывчатым свойствам ВВ делятся на:

  1. Инициирующие. Они используются для подрыва (детонации) других взрывчатых веществ. Основными отличиями ВВ этой группы является высокая чувствительность к инициирующим факторам и высокая скорость детонации. К этой группе относятся: гремучая ртуть, диазодинитрофенол, тринитрорезорцинат свинца и другие. Как правило, эти соединения используются в капсюлях-воспламенителях, запальных трубках, капсюлях-детонаторах, пиропатронах, самоликвидаторах;
  2. Бризантные взрывчатые вещества. Этот тип ВВ обладает значительным уровнем бризантности и используется в качестве основного заряда для подавляющего большинства боеприпасов. Эти мощные взрывчатые вещества отличаются по своему химическому составу (N-нитрамины, нитраты, другие нитросоединения). Иногда их используют в виде различных смесей. Бризантные взрывчатые вещества также активно используют в горном деле, при прокладке туннелей, проведении других инженерных работ;
  3. Метательные взрывчатые вещества. Являются источником энергии для метания снарядов, мин, пуль, гранат, а также для движения ракет. К этому классу взрывчатых веществ относятся пороха и различные виды ракетного топлива;
  4. Пиротехнические составы. Используются для снаряжения специальных боеприпасов. При сгорании производят специфический эффект: осветительный, сигнальный, зажигательный.

Взрывчатые вещества разделяют и по их физическому состоянию на:

  1. Жидкие. Например, нитрогликоль, нитроглицерин, этилнитрат. Существуют и разнообразные жидкостные смеси ВВ (панкластит, взрывчатые вещества Шпренгеля);
  2. Газообразные;
  3. Гелеобразные. Если растворить нитроцеллюлозу в нитроглицерине, то получится так называемый гремучий студень. Это крайне нестабильное, но довольно мощное взрывчатое гелеобразное вещество. Его любили использовать российские революционеры-террористы в конце XIX века;
  4. Суспензии. Довольно обширная группа взрывчатых веществ, которые в наши дни применяются для промышленных целей. Существуют различные виды взрывчатых суспензий, в которых ВВ либо окислитель является жидкой средой;
  5. Эмульсионные взрывчатые вещества. Весьма популярный в наши дни вид ВВ. Часто используется в строительных или шахтных работах;
  6. Твердые. Наиболее распространенная группа ВВ. К ней относятся практически все взрывчатые вещества, используемые в военном деле. Могут быть монолитными (тротил), гранулированными или порошкообразными (гексоген);
  7. Пластичные. Эта группа взрывчатых веществ обладает пластичностью. Такая взрывчатка стоит дороже обычной, поэтому ее редко применяют для снаряжения боеприпасов. Типичным представителем этой группы является пластид (или пластит). Его часто используют при проведении диверсий для подрыва конструкций. По своему составу пластид – это смесь гексогена и какого-либо пластификатора;
  8. Эластичные.

1.2. Чувствительность взрывчатых веществ

Чувствительностью ВВ называется способность ВВ к возникновению в них под влиянием внешних воздействий химической реакции, завершающейся горением или детонацией. Чувствительность ВВ – один из основных факторов, определяющих возможность их технического использования. Практически невозможно использовать ВВ, обладающие очень высокой чувствительностью. Но чувствительность ВВ не должна быть и очень низкой, т.к. требуемое возбуждение детонации будет связано с большими трудностями.

В зависимости от свойств ВВ для возбуждения его детонации может быть применена механическая энергия (например, удар, трение, накол), тепловая энергия (луч пламени, электрическая искра, нагрев проволоки), энергия детонации другого ВВ (например, при детонации детонатора или капсюля – детонатора).

Тепловая и механическая энергия применяются, как правило, для возбуждения детонации инициирующих ВВ. В бризантных взрывчатых веществах возбуждение детонации осуществляется при помощи взрыва другого ВВ (капсюля-детонатора).

Чувствительность к тепловым воздействиям

Чувствительность к тепловым воздействиям характеризуется температурой вспышки. Температурой вспышки называется наименьшая температура, до которой должно быть нагрето ВВ, чтобы вызвать в нем распространяющуюся химическую реакцию, протекающую с такой скоростью, что она сопровождается появлением пламени, а иногда и звуковым эффектом. При достижении температуры вспышки теплоприход превышает теплоотдачу, а это приводит к быстрому повышению температуры, увеличению скорости реакции и воспламенению вещества.

Температура вспышки зависит:

  • от природы ВВ;
  • от теплопроводности материала сосуда;
  • от величины навески ВВ (чем больше навеска, тем меньше температура вспышки);
  • от длительности нагревания (чем меньше длительность нагревания, тем выше температура вспышки).

Кроме температуры вспышки, чувствительность к тепловым воздействиям может быть оценена по легкости зажжения вещества источником пламени, по поведению ВВ при бросании в раскаленную железную чашку и т.д. Для определения воспламеняемости навеску ВВ помещают в пробирку, в которую вводят огнепроводный шнур. Шнур поджигают сверху и наблюдают за поведением ВВ при действии на него пламени. При этом инициирующие ВВ могут детонировать, тетрил воспламениться, а некоторые вещества не воспламеняются (аммониты, нитроароматические соединения).

Таблица: Температура вспышки ВВ

Взрывчатое вещество Температура вспышки, С Взрывчатое вещество Температура вспышки, С
Гремучая ртуть 175-180 Тетрил 195-200
Азид свинца 340 Пикриновая кислота 290-300
Пироксилин 195 Тротил 290-295
Нитроглицерин 200 Аммониты 220-240
Тэн 215 Бездымные пороха 180-200
Гексоген 230 Дымный порох 290-310

Чувствительность к механическим воздействиям

О чувствительности ВВ к механическим воздействиям судят по чувствительности к удару, трению, прострелу пулей. При механических воздействиях во взрывчатом веществе возникают очаги повышенной температуры (горячие точки). Инициирование взрыва осуществляется в том случае, если в процессе химической реакции, начавшейся в этих очагах, будет достигнуто превышение теплоприхода над теплоотводом. Чувствительность к удару бризантных ВВ и порохов определяют процентом взрывов при падении на закрепленное ВВ груза массой 10 кг с высоты 25 см. Чувствительность инициирующих взрывчатых веществ характеризуется верхним и нижним пределом чувствительности. Необходимость определения этих двух характеристик объясняется тем, что инициирующие ВВ должны, с одной стороны, безотказно возбуждать взрывы, а с другой стороны – обеспечивать безопасность работ.

Нижним пределом чувствительности называется максимальная высота падения груза, при которой из нескольких испытаний не получают ни одного взрыва.

Верхним пределом чувствительности называется минимальная высота падения груза, при которой получают 100 % взрывов.

Таблица: Чувствительность бризантных ВВ к удару

(груз массой 10 кг, высота падения 25 см)

Взрывчатое вещество Процент взрывов Взрывчатое вещество Процент взрывов
Тэн 100 Пикриновая кислота 24-32
Гексоген 70-80 Аммотолы 20-30
Бездымные пороха 70-80 Тротил 4-8
Тетрил 50-60    

Таблица: Чувствительность инициирующих ВВ к удару

Взрывчатое вещество Груз, Кг Пределы чувствительности, см
нижний верхний
Гремучая ртуть 0,69 5,5 8,5
Тетразен 0,69 7,0 12,5
Азид свинца 0,98 7,0 23,0
ТНРС 1,43 14,0 25,0

Класс 7. Радиоактивные вещества

Радиоактивные материалы — это любой материал, содержащий радионуклиды, в котором концентрация активности, а также полная активность груза превышают значения, указанные в предписаниях. Главная (основная) опасность: радиоактивное излучение в форме альфа-, бета- или гамма-излучения.

Категория I — белая

Символ (трилистник) — черный. Фон — белый. Цифра «7» в нижнем углу. Текст (обязательный) — черный в нижней половине знака — «Радиоактивно», «Содержимое…», «Активность…». За словом «Радиоактивно» должна следовать одна красная вертикальная полоса. Цифра «7» в нижнем углу

Категория II — желтая

Символ (трилистник) — черный. Фон — верхняя половина желтая с белой каймой. Нижняя — белая. Текст (обязательный) — черный в нижней половине знака. «Радиоактивно» «Содержимое…» «Активность…». В черном прямоугольнике: «Транспортный индекс». За словом «Радиоактивно» должны следовать две красные вертикальные полосы. Цифра «7» в нижнем углу.

Категория III — желтая

Символ (трилистник) — черный. Фон — верхняя половина желтая с белой каймой. Нижняя — белая. Текст (обязательный) — черный в нижней половине знака: «Радиоактивно» «Содержимое…» «Активность…». В черном прямоугольнике — «Транспортный индекс». За словом «Радиоактивно» должны следовать три красные вертикальные полосы. Цифра «7» в нижнем углу.

Делящийся материал класса 7

Фон — белый. Текст (обязательный) — черный в верхней половине знака — «Делящийся материал». В черном прямоугольнике в нижней половине знака — «Индекс безопасности по критичности». Цифра «7» в нижнем углу.

Дополнительная информация о подклассе

Дополнительные опасности: вещества могут быть самовоспламеняющимися, вести к воспламенению, могут быть коррозионными, могут вести к освобождению тепловой энергии. Возможный ущерб от воздействия лучевого излучения: ожоги, нарушения иммунной системы, изменения состава крови, выпадение волос, раковые заболевания, лейкемия, генетические нарушения, проявляющиеся у потомства, смерть. Безопасность перевозок достигается тщательным соблюдением всех требований, предъявляемых к перевозке радиоактивных материалов.

Состав

Существуют два больших класса взрывчатых веществ — индивидуальные и композитные.

Индивидуальные представляют собой химические соединения, способные к внутримолекулярному окислению. При этом молекула вовсе не должна содержать в своем составе кислород — достаточно, чтобы одна часть молекулы передала электрон другой ее части с положительным тепловым выходом.

Энергетически молекулу такого взрывчатого вещества можно представить как шарик, лежащий в углублении на вершине горы. Он будет спокойно лежать до передачи ему некоторого сравнительно небольшого импульса, после чего скатится по склону горы, выделив при этом энергию, значительно превышающую затраченную.

Фунт тротила в заводской упаковке и аммоналовый заряд массой 20 килограмм.

К индивидуальным взрывчатым веществам относятся тринитротолуол (он же тротил, тол, ТНТ), гексоген, нитроглицерин, фульминат ртути (гремучая ртуть), азид свинца.

Композитные состоят из двух и более веществ, не связанных между собой химически. Иногда компоненты таких взрывчаток сами по себе не являются способными к детонации, а проявляют эти свойства при реакции между собой (обычно речь идет о смеси окислителя и восстановителя). Характерный пример такого двухсоставного композита — оксиликвит (пористое горючее вещество, пропитанное жидким кислородом).

Композиты могут состоять и из смеси индивидуальных взрывчатых веществ с добавками, регулирующими чувствительность, фугасность и бризантность. Такие добавки могут как ослаблять взрывные характеристики композитов (парафин, церезин, тальк, дифениламин), так и усиливать их (порошки различных химически активных металлов — алюминия, магния, циркония). Кроме того, существуют стабилизирующие добавки, увеличивающие срок хранения готовых взрывных зарядов, и кондиционные, доводящие взрывчатое вещество до требуемого физического состояния.

В связи с развитием и распространением мирового терроризма ужесточились требования к контролю над взрывчатыми веществами. В состав современных взрывчаток в обязательном порядке вводятся химические маркеры, обнаруживаемые в продуктах взрыва и однозначно указывающие на производителя, а также пахучие вещества, помогающие в обнаружении взрывных зарядов служебными собаками и приборами газовой хроматографии.

Взрывчатка: что это такое?

Взрывчатые вещества – это большая группа химических соединений или смесей, которые под воздействием внешних факторов способны к быстрой, самоподдерживающейся и неуправляемой реакции с выделением большого количества энергии. Проще говоря, химический взрыв – это процесс преобразования энергии молекулярных связей в тепловую энергию. Обычно его результатом является большое количество раскаленных газов, которые и выполняют механическую работу (дробление, разрушение, перемещение и др.).

Классификация взрывчатых веществ довольно сложна и запутанна. К ВВ относятся вещества, которые распадаются не только в процессе взрыва (детонации), но и медленного или быстрого горения. К последней группе относятся пороха и различные виды пиротехнических смесей.

Детонацией называют стремительное (сверхзвуковое) распространение фронта сжатия с сопутствующей ему экзотермической реакцией во взрывчатом веществе. В этом случае химические превращения идут настолько бурно и выделяется такое количество тепловой энергии и газообразных продуктов, что в веществе образуется ударная волна. Детонация – это процесс максимально быстрого, можно сказать, лавинообразного вовлечения вещества в реакцию химического взрыва.

Дефлаграция, или горение – это тип окислительно-восстановительной химической реакции, во время которой ее фронт перемещается в веществе за счет обычной теплоотдачи. Подобные реакции хорошо всем известны и часто встречаются в повседневной жизни.

Любопытно, что энергия, выделяемая при взрыве, не так уж и велика. Например, при детонации 1 кг тротила ее выделяется в несколько раз меньше, чем при сгорании 1 кг каменного угля. Однако при взрыве это происходит в миллионы раз быстрее, вся энергия выделяется практически мгновенно.

Чтобы запустить процесс химического взрыва необходимо воздействие внешнего фактора, он может быть нескольких видов:

  • механический (накол, удар, трение);
  • химический (реакция какого-либо вещества с зарядом взрывчатки);
  • внешняя детонация (взрыв в непосредственной близости от ВВ);
  • тепловой (пламя, нагревание, искра).

Следует отметить, что разные виды ВВ имеют различную чувствительность к внешним воздействиям.

Некоторые из них (например, черный порох) прекрасно реагируют на тепловое воздействие, но при этом практически не откликается на механическое и химическое. А для подрыва тротила нужно только детонационное воздействие. Гремучая ртуть бурно реагирует на любой внешний раздражитель, а есть некоторые ВВ, которые детонируют вообще безо всякого внешнего воздействия. Практическое использование таких «взрывоопасных» ВВ попросту невозможно.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector