Сколько на самом деле галактик в местной группе и что это говорит о млечном пути?

Строение галактики Млечный Путь

Галактический диск не однороден по своему составу. Как и другие спиральные гравитационные системы, Млечный Путь имеет три различаемых области:

  • ядро, сформированное плотным звездным скоплением, насчитывающим миллиард звезд разного возраста;
  • сам галактический диск, сформированный из скоплений звезд, звездного газа и пыли;
  • корона, сферическое гало — область в которой располагаются шаровые скопления, карликовые галактики, отдельные группы звезд, космическая пыль и газ.

Центр галактики

Вблизи плоскости галактического диска располагаются молодые звезды, собранные в скопления. Плотность звездных скоплений в центре диска выше. Вблизи центра плотность составляет 10000 звезд на один кубический парсек. В районе, где находится Солнечная система, плотность звезд составляет уже 1-2 светила на 16 кубических парсеков. Как правило, возраст этих небесных тел не более нескольких миллиардов лет.

Строение галактики Млечный Путь

Если на схеме строение галактики достаточно понятно и прозрачное, то в реальности рассмотреть центральные области галактического диска практически невозможно. Газопылевые облака и скопления звездного газа скрывают от нашего взора свет из центра Млечного пути, в котором живет настоящий космический монстр — сверхмассивная черная дыра. Масса этого сверхгиганта составляет приблизительно 4,3 миллиона M☉. Рядом со сверхгигантом располагается черная дыра меньших размеров. Дополняют эту мрачную компанию сотни карликовых черных дыр. Черные дыры Млечного пути являются не только пожирателями звездной материи, но и выполняют функцию родильного дома, выбрасывая в пространство огромные сгустки протонов, нейтронов и электронов. Именно из них образуется атомарный водород — главное топливо звездного племени.

Перемычка

Геометрически структура галактики выглядит достаточно просто. Каждый спиральный рукав, а их у Млечного пути целых четыре, берет свое начало из газового кольца. Рукава расходятся под углом 20⁰. На внешних границах галактического диска основным элементом является атомарный водород, который распространяется от центра галактики к периферии. Толщина водородного слоя на окраинах Млечного пути значительно шире, чем в центре, при этом плотность его крайне низкая. Разряжению водородного слоя способствует воздействие карликовых галактик, которые неотлучно следуют с нашей галактикой на протяжении десятков миллиардов лет.

Современная картина

Когда ближайшая галактика к Млечному Пути была открыта, учёные смогли сформировать несколько версий её особенностей. Сделано это было на основании проведённого комплексного анализа отдельных светил. Теория о том, что галактические системы могут увеличиваться в размерах и, тем самым, поглощать своих малых соседей, получила подтверждение. И МП, который достиг нынешних размеров, сделал это за счёт «поедания» других элементов. И в настоящее время он продолжает делать это.

Специалисты в области астрономии имеют уверенность в том, что галактическая группа Большого Пса в настоящий момент времени пребывает на стадии расчленения силами гравитационного поля, относящегося к МП. Львиная доля его уже деградировала, и данный процесс продолжается в момент его прохождения через МП. Вероятнее всего, в далёком будущем этот процесс подойдёт к завершению, и Псом будут «пожертвованы» его звёзды в «хранение» МП.

До 2003 года на роль ближайшего соседа претендовала карликовая галактика в Стрельце, дистанция от которой составляет 81 000 световых лет. В её составе присутствует 4 шаровых скопления с диаметральным сечением порядка 10 000 световых лет, которые удалось отыскать в 1994 году. До этого момента в качестве ближайшего соседа выступала Большое Магелланово Облако.

Если вести речь о ближайшей спиральной галактике, ею является группа Андромеды. Несмотря на наличие гравитационной взаимосвязи между ней и МП, называть её ближайшим соседом учёные не рискуют, т. к. расстояние превышает отметку в 2,13 млн св. лет. На сегодняшний день наблюдается сближение Андромеды с Землёй на скорости 110 км/с. Есть версия, что спустя 4 млрд лет произойдёт их объединение и последующее образование новой группы.

Вселенная не перестает меняться

Итак, в следующий раз, когда вы посмотрите на звездное небо, вспомните, что даже Вселенная постоянно меняется. Ничто не остается неизменным в этом волшебном мире. И даже галактики эволюционируют. Миллиарды и миллиарды лет. Поэтому знайте – мы имеем привилегию видеть какой-то исторический момент в жизни космоса. И это время не будет длиться вечно. И, возможно, очень немногие цивилизации в этой Галактике (если кроме нас здесь кто-то еще есть) смогут похвастаться, что помнят те дни, когда Млечный Путь и галактика Андромеды были разными объектами…

Но что же будет с Землей? Совершенно очевидно, что Земля будет необитаемой планетой уже задолго до этих событий. Но если человечество выживет, где-нибудь на другой планете или в другой звездной системе, то наши далекие потомки увидят колоссальное космическое столкновение из первых рядов партера величественного театра Вселенной…

Рассказать всей Вселенной!

Что такое галактическая стена?

Согласно статье, опубликованной в The New York Times, международная группа астрономов во главе с Даниэлем Помаредом из университета Париж-Сакле и Р. Брентом Талли из Гавайского университета опубликовала результаты нового исследования в журнале Astrophysical Journal. В работе присутствуют карты и диаграммы особенностей нашей локальной Вселенной, а также видео-экскурсия по стене Южного полюса.

Эта работа – последняя часть продолжающейся миссии, главной целью которой является обнаружение нашего места во Вселенной. В конце-концов мы должны знать своих галактических соседей и бесконечных пустот в лицо, ведь именно благодаря им можно понять, куда мы движемся. Открытие особенно примечательно, так как обнаруженное гигантское звездное скопление все это время оставалось незамеченным. Но что именно удалось узнать ученым?

Как оказалось, новая стена объединяет множество других космографических особенностей: расположение галактик или их отсутствие, о чем исследователи узнали за последние несколько десятилетий. Исследование основывается на измерениях расстояний от 18 000 галактик до 600 миллионов световых лет. Для сравнения – самые отдаленные объекты, которые мы можем увидеть — это квазары и галактики, образовавшиеся вскоре после Большого взрыва, — находятся от нас на расстоянии около 13 миллиардов световых лет.

Компьютерная модель стены Южного полюса, с более плотными областями материи, отображенными красным цветом. Вся показанная область занимает около 1,3 миллиарда световых лет; галактика Млечный Путь, едва достигающая 100 000 световых лет в поперечнике, расположена в центре изображения

В расширяющейся Вселенной далекие галактики удаляются от нас, прямо как точки на надувающемся воздушном шаре; чем дальше они находятся, тем быстрее они удаляются от нас, согласно соотношению, называемому законом Хаббла. Это движение от Земли заставляет свет от галактик смещаться к более длинным, более красным длинам волн и более низким частотам, словно удаляющиеся сирены скорой помощи. Измеряя расстояния между галактиками исследователи смогли отличить движение, вызванное космическим расширением, от движения, вызванного гравитационными неравномерностями.

В результате астрономы обнаружили, что галактики между Землей и стеной Южного полюса удаляются от нас немного быстрее, чем должны были. А галактики за стеной движутся медленнее, чем следовало бы, сдерживаемые гравитационным сопротивлением стены. И все же, в космологическом отношении, стена Южного полюса находится поблизости. Можно удивиться тому, как такое большое и не столь отдаленное сооружение оставалось незамеченным все эти годы, но в расширяющейся Вселенной всегда есть на что посмотреть.

Список ближайщих к Солнцу звезд

Звёздная система Звезда или коричневый карлик Спек. класс Вид. зв. вел. Расстояние,св. год
Солнечная система Солнце G2V −26,72 ± 0,04 8,32 ± 0,16 св. мин
1 α Центавра Проксима Центавра 1 M5,5Ve 11,09 4,2421 ± 0,0016
α Центавра A 2 G2V 0,01 4,3650 ± 0,0068
α Центавра B 2 K1V 1,34
2 Звезда Барнарда 4 M4Ve 9,53 5,9630 ± 0,0109
3 Луман 16 A 5 L8 23,25 6,588 ± 0,062
B 5 L9/T1 24,07
4 WISE 0855–0714 7 Y 13,44 7,18+0,78−0,65
5 Вольф 359 8 M6V 13,44 7,7825 ± 0,0390
6 Лаланд 21185 9 M2V 7,47 8,2905 ± 0,0148
7 Сириус Сириус A 10 A1V −1,43 8,5828 ± 0,0289
Сириус B 10 DA2 8,44
8 Лейтен 726-8 Лейтен 726-8 A 12 M5,5Ve 12,54 8,7280 ± 0,0631
Лейтен 726-8 B 12 M6Ve 12,99
9 Росс 154 14 M3,5Ve 10,43 9,6813 ± 0,0512
10 Росс 248 15 M5,5Ve 12,29 10,322 ± 0,036
11 WISE 1506+7027 16 T6 14.32 10,521
12 ε Эридана 17 K2V 3,73 10,522 ± 0,027
13 Лакайль 9352 18 M1,5Ve 7,34 10,742 ± 0,031
14 Росс 128 19 M4Vn 11,13 10,919 ± 0,049
15 WISE 0350-5658 20 Y1 22.8 11,208
16 EZ Водолея EZ Водолея A 21 M5Ve 13,33 11,266 ± 0,171
EZ Водолея B 21 M? 13,27
EZ Водолея C 21 M? 14,03
17 Процион Процион A 24 F5V-IV 0,38 11,402 ± 0,032
Процион B 24 DA 10,70
18 26 K5V 5,21 11,403 ± 0,022
26 K7V 6,03
19 28 M3V 8,90 11,525 ± 0,069
28 M3,5V 9,69
20 30 M1,5V 8,08 11,624 ± 0,039
30 M3,5V 11,06
21 32 K5Ve 4,69 11,824 ± 0,030
32 T1V >23
32 T6V >23
22 35 M6,5Ve 14,78 11,826 ± 0,129
23 36 G8Vp 3,49 11,887 ± 0,033
24 GJ 1061 37 M5,5V 13,09 11,991 ± 0,057
25 YZ Кита 38 M4,5V 12,02 12,132 ± 0,133
26 Звезда Лейтена 39 M3,5Vn 9,86 12,366 ± 0,059
27 40 M6,5V 15,14 12,514 ± 0,129
28 41 M8,5V 17,39 12,571 ± 0,054
42 T6
29 Звезда Каптейна 43 M1,5V 8,84 12,777 ± 0,043
30 44 M0V 6,67 12,870 ± 0,057
31 45 Y1 21,1 13,046
32 Крюгер 60 Крюгер 60 A 46 M3V 9,79 13,149 ± 0,074
Крюгер 60 B 46 M4V 11,41
33 48 M8,5V 17,39 13,167 ± 0,082
34 49 T9 24.32 13,259
35 50 M4,5V 11,15 13,349 ± 0,110
50 M5,5V 14,23
37 53 M3V 10,07 13,820 ± 0,098
38 Звезда ван Маанена 54 DZ7 12,38 14,066 ± 0,109
  №   Обозначение Обозначение   №   Спек. класс Вид. зв. вел. Расстояние,св. год
Звёздная система Звезда или коричневый карлик

Планеты, похожие на Землю

Если в нашей галактике имеется более 100 миллиардов планет, сколько же из них планет, похожих на Землю? Оказывается, не так уж и много. Существуют десятки различных типов планет: газовые гиганты, планеты-пульсары, бурые карлики и планеты, на которых с неба падает дождь из расплавленного металла. Те планеты, которые состоят из каменных пород, могут располагаться слишком далеко или слишком близко к звезде, поэтому на Землю они вряд ли похожи.

Результаты последних исследований показали, что в нашей галактике, оказывается, больше планет земного типа, чем предполагалось раннее, а именно: от 11 до 40 миллиардов. Ученые взяли в качестве примера 42 тысячи звезд, похожих на наше Солнце, и стали искать экзопланеты, которые могут вращаться вокруг них в зоне, где не слишком жарко и не слишком холодно. Было обнаружено 603 экзопланеты, средикоторых 10 соответствовали критериям поиска.

Анализируя данные о звездах, ученые доказали существование миллиардов похожих на Землю планет, которые им только предстоит официально открыть. Теоретически эти планеты способны поддерживать температуру для существования на них жидкой воды, которая, в свою очередь, позволит возникнуть жизни.

Местная Группа — часть космической паутины

Ближайшее скопление галактик к Местной Группе — это скопление Девы, которое находится от нас на расстоянии около 55 миллионов световых лет. В скоплении Девы насчитывается более 2,000 «островных вселенных». Сравните это с Местной Группой, в которую, согласно подтвержденным данным, входит около 50 галактик, а по неподтвержденным — еще 30. При этом, размер большинства галактик Местной Группы не сопоставим с размером Млечного Пути и Галактики Андромеды. Однако и это еще не все — Местная Группа — лишь малая, периферийная часть сверхскопления галактик, которое в общей сложности насчитывает больше тысячи самых разных галактик. Вместе эти сверхскопления образуют гигантскую но далеко не единственную субструктуру Вселенной. Чувствуете себя маленькими?

Перед вами часть галактик Местной Группы

Как пишет издание Astronomy, большинство галактик, составляющих космическую паутину — сеть сверхскоплений галактик — существуют в небольших группах, которые разбросаны по всему космосу. Исследователи полагают, что галактики Местной Группы возникли более 13 миллиардов лет назад, когда первые скопления вещества разрослись в протогалактики. Спустя миллиард лет после Большого Взрыва, когда сформировались звезды, Местная Группа растянулась на 600 000 световых лет. Дело в том, что будучи близко друг к другу, галактики в то время объединялись чаще. Не исключено, что подобные слияния могли создать Млечный Путь из 100 или более протогалактик.

Спутники Млечного Пути — Большое и Малое Магеллановы Облака — находятся от нас на расстоянии 163 тысяч световых лет. Это карликовые галактики, которые Млечный Путь поглотит в будущем. В этом нет ничего удивительного, так как наша галактика прямо сейчас уничтожает и пожирает сфероидальную карликовую галактику Стрельца. Кроме того, примерно через 4 миллиарда лет Галактика Андромеды и Млечный Путь столкнутся в результате образовав новую, большую галактику, которая в конечном итоге станет гигантской эллиптической галактикой.

Большое и Малое Магеллановы Облака

Учитывая тот факт, что наблюдения астрономов ограничены наблюдаемой Вселенной, изучение галактик Местной Группы и ближайшего к ней скопления Девы позволяет ученым увидеть микромир — своего рода лабораторию или мини Вселенную. Вещество, которое астрономы называют темной материей, составляет 26% от всего вещества во Вселенной, но пока никто не знает, что она из себя представляет. Используя технику, называемую гравитационным линзированием, астрономы изучили ореол Млечного Пути и исключили нескольких предполагаемых кандидатов. Точно так же ученые используют ближайшие галактики, чтобы изучить, где образуются черные дыры. Так или иначе, эволюция галактик и процесс звездообразования, позволяет ученым узнать больше не только о нашей собственной галактике, но и обо всей Вселенной.

Место галактики во Вселенной

Следует отметить одну примечательную особенность. Положение Солнца и соответственно, планеты Земля очень удобно. В галактическом диске постоянно происходит процесс уплотнения. Вызван этот механизм несоответствием скорости вращения спиральных ветвей и движения звезд, которые перемещаются в пределах галактического диска по своим законам. Во время уплотнения происходят бурные процессы, сопровождающиеся мощным ультрафиолетовым излучением. Солнце и Земля уютно расположились в коротационной окружности, где подобная бурная деятельность отсутствует: между двумя спиральными ветвями на границе рукавов Млечного Пути — Стрельца и Персея. Этим объясняется и то спокойствие, в котором мы пребываем столь длительное время. Уже более 4,5 млрд. лет нас не затрагивают космические катаклизмы.

Столкновение черных дыр

Галактика Андромеды и Млечный Путь имеют центральные сверхмассивные черные дыры: Стрелец А (3,6*106 масс Солнца) и объект внутри P2 скопления Галактического ядра. Эти черные дыры сойдутся в одной точке возле центра новообразованной галактики, передавая орбитальную энергию звездам, которые со временем сместятся на более высокие траектории. Вышеописанный процесс может занять миллионы лет. Когда черные дыры приблизятся на расстояние одного светового года друг от друга, они начнут испускать гравитационные волны. Орбитальная энергия станет еще мощнее, до тех пор пока слияние не завершится полностью. Исходя из данных моделирования, проведенного в 2006 году, Земля может быть сначала отброшена почти к самому центру новообразованной галактики, затем пройдет около одной из черных дыр и будет извержена за пределы Млекомеды.

Переоцененный противник

Как сообщают исследователи в официальном пресс-релизе, в ходе работы они обнаружили, что масса нашего ближайшего галактического соседа примерно соответствует массе Млечного Пути. Согласно расчетам, масса галактики Андромеды примерно в 800 миллиардов раз превышает массу Солнца. Чтобы определить массу ближайшей к нам галактики, исследователи вычислили скорость, которую необходимо набрать быстро движущейся звезде, чтобы избежать гравитационного притяжения галактики, в которой она находится. Скорость, необходимая для выхода звезды за пределы галактики, известна как скорость выхода объекта. Так, при запуске ракеты в космос ее скорость достигает 11 км/с, что позволяет ей преодолеть гравитационное притяжение Земли. Млечный Путь в триллион раз тяжелее нашей небольшой планеты, поэтому, чтобы избежать его гравитационного притяжения, скорость объекта при выходе из галактики должна составлять не менее 550 км/с.

Так выглядит миллиард звезд в галактике Андромеды

Следует отметить, что это далеко не первый раз, когда вес галактики пересчитывается на основе анализа скоростей выхода объектов внутри нее. В 2014 году астрономы использовали аналогичную технику, чтобы пересмотреть массу Млечного Пути. Согласно полученным результатам, количество таинственной темной материи — материи, которая никак не взаимодействует с фотонами света — в нашей галактике намного меньше, чем предполагали специалисты.

Теоретические модели нашей галактики

Еще древние астрономы пытались доказать, что видимая полоса на небосклоне — это часть огромного звездного диска, вращающегося вокруг своего центра. Этому утверждению способствовали проводимые математические подсчеты. Получить представление о нашей галактике удалось только спустя тысячи лет, когда в помощь науке пришли инструментальные методы исследования космоса. Прорывом в исследовании природы Млечного пути стала работа англичанина Уильяма Гершеля. В 1700 году он сумел опытным путем доказать, что наша галактика имеет форму диска.


Млечный Путь в телескоп


Эдвин Хаббл

Основополагающей теорией существования галактик является теория американского астрофизика Эдвина Хаббла. Ему принадлежит идея классифицировать все гравитационные образования, деля их на эллиптические галактики и образования спирального типа. Последние, спиральные галактики представляют самую обширную группу, в которую входят образования различных размеров. Крупнейшей из недавно открытых спиральных галактик является NGC 6872, диаметр которой превышает 552 тыс. световых лет.

Также известная как Мессье 31, или M31

Шарль Мессье

Это имя она получила от Шарля Мессье, французского астронома, внесшего ее в свой знаменитый каталог под определением M31. Мессье каталогизировал многие объекты Северного полушария, правда далеко не все они были открыты именно Мессье.

В 1757 году ученый приступил к поиску кометы Галлея, однако расчеты показали, что он ошибся в координатах. Тем не менее в том же месте наблюдения он обнаружил туманность — первый объект, который он внес в свой каталог под названием M1 (также известна как Крабовидная туманность). Что интересно, первым наблюдал ее английский астроном Джон Бевис еще в 1731 году. Объект под названием M31 попал в каталог Мессье в 1767 году. К концу того же года в общей сложности в каталог было добавлено 38 объектов. К 1781 году число составляло уже 103 объекта, 40 из которых были открыты лично Мессье.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector