Межзвездная среда

Современные методы исследования областей H II

Изображения в видимом свете (слева) показывают пыль и газ туманности Ориона. На изображениях в инфракрасном диапазоне (справа) видны звёзды внутри туманности.

Как и для планетарных туманностей, точное изучение химического состава для областей H II затруднено. Существует два различных способа определения содержания металлов (т. е. других элементов помимо водорода и гелия) в туманности, которые основаны на различных типах спектральных линий. Первый метод рассматривает рекомбинационные линии, полученные в результате воссоединения (рекомбинации) ионов с электронами; второй — запрещённые линии, источником которых служит возбуждение ионов ударами электронов (столкновительное возбуждение). К сожалению, по двум этим методам иногда получаются существенно различающиеся цифры. Некоторые астрономы объясняют это наличием малых температурных колебаний внутри исследуемой области; другие говорят, что различия слишком велики, чтобы их можно было объяснить такими колебаниями, и обусловливают наблюдаемый эффект присутствием в туманности облаков, заполненных холодным, разреженным газом с низким содержанием водорода и высоким содержанием тяжёлых элементов.

Кроме того, не до конца изучен процесс формирования массивных звёзд внутри области. Этому препятствуют две проблемы. Во-первых, значительное расстояние от Земли до больших областей H II: ближайшая из них находится более чем в 1000 св. годах от нас, а расстояние до других превосходит эту цифру в несколько раз. Во-вторых, образование этих звёзд скрыто от нас слоями пыли, так что наблюдения в видимом спектре невозможны. Радио и инфракрасные лучи могут преодолеть этот заслон, но самые молодые звёзды могут и не излучать достаточно энергии на этих частотах.

Эмиссионные газовые туманности.

Большая часть межзвездной среды не доступна наблюдениям ни в какие оптические телескопы. Наиболее яркое исключение из этого правила – газовые эмиссионные туманности, наблюдавшиеся еще с самыми примитивными оптическими средствами. Самая известная из них – Большая туманность Ориона, которая видна даже невооруженным глазом (при условии очень хорошего зрения) и особенно красива при наблюдении в сильный бинокль или небольшой телескоп.

Известны многие сотни газовых туманностей на различных расстояниях от нас, причем почти все они сосредоточены вблизи полосы Млечного Пути – там, где чаще всего встречаются молодые горячие звезды.

В эмиссионных туманностях плотность газа значительно выше, чем в окружающем их пространстве, но и в них концентрация частиц составляет лишь десятки или сотни атомов в кубическом сантиметре. Такая среда по «земным» меркам не отличима от полного вакуума (для сравнения: концентрация частиц воздуха при нормальном атмосферном давлении составляет в среднем 3·1019 молекул в см3, и даже наиболее мощные вакуумные насосы не создадут такой низкой плотности, какая существует в газовых туманностях). Туманность Ориона имеет сравнительно небольшой линейный размер (20–30 световых лет). Поскольку диаметры некоторых туманностей превышают 100 св. лет, полная масса газа в них может достигать десятков тысяч масс Солнца.

Эмиссионные туманности светятся потому, что внутри них или рядом с ними находятся звезды редкого типа – горячие голубые звезды-сверхгиганты. Правильнее эти звезды следовало бы назвать ультрафиолетовыми, поскольку их основное излучение происходит в жестком ультрафиолетовом диапазоне спектра. Излучение с длиной волны короче 91,2 нм очень эффективно поглощается межзвездными атомами водорода и ионизует их, т.е. разрывает в них связи между электронами и ядрами атомов – протонами. Этот процесс (ионизация) сбалансирован противоположным процессом (рекомбинация), в результате которого под действием взаимного притяжения электроны вновь объединяются с протонами в нейтральные атомы. Такой процесс сопровождается излучением электромагнитных квантов. Но обычно электрон, соединяясь с протоном в нейтральный атом, не сразу попадает на нижний энергетический уровень атома, а задерживается на нескольких промежуточных, и каждый раз при переходе между уровнями атом излучает фотон, энергия которого меньше, чем у того фотона, который ионизовал атом. В результате, один ультрафиолетовый фотон, ионизовавший атом, «дробится» на несколько оптических. Так газ преобразует не видимое глазом ультрафиолетовое излучение звезды в оптическое излучение, благодаря которому мы видим туманность.

Эмиссионные туманности типа Туманности Ориона – это газ, нагреваемый ультрафиолетовыми звездами. Ту же природу имеют и планетарные туманности, состоящие из газа, сбрасываемого стареющими звездами.

Но наблюдаются и светящиеся газовые туманности несколько иной природы, которые возникают при взрывных процессах в звездах. Прежде всего, это остатки взорвавшихся сверхновых звезд, примером которых может служить Крабовидная туманность в созвездии Тельца. Такие туманности нестационарны, их отличает быстрое расширение.

Внутри газовых остатков сверхновых звезд нет ярких ультрафиолетовых источников. Энергия их свечения – это преобразованная энергия газа, разлетающегося после взрыва звезды, плюс энергия, выделяемая сохранившимся остатком Сверхновой. В случае Крабовидной туманности таким остатком является компактная и быстро вращающаяся нейтронная звезда, непрерывно выбрасывающая в окружающее пространство потоки высокоэнергичных элементарных частиц. Через десятки тысяч лет подобные туманности, расширяясь, постепенно растворяются в межзвездной среде.

Атомарный, молекулярный и горячий газ.

Межзвездный газ – это, в основном, смесь водорода (около 70%) и гелия (около 28%) с очень небольшой примесью более тяжелых химических элементов. Средняя концентрация частиц газа в межзвездном пространстве чрезвычайно мала и не превышает одной частицы на 1–2 кубических см. В объеме, равном объему земного шара, содержится около 1 кг межзвездного газа, но это только в среднем. Газ очень неоднороден как по плотности, так и по температуре.

Температура основной массы газа не превышает нескольких тысяч градусов – недостаточно высокой для того, чтобы водород или гелий был ионизован. Такой газ называют атомарным, поскольку он состоит из нейтральных атомов. Холодный атомарный газ практически не излучает в оптическом диапазоне, поэтому долгое время о нем почти ничего не было известно.

Самый распространенный атомарный газ – водород (условное обозначение – HI) – наблюдается по радиоизлучению на длине волны около 21 см. Радионаблюдения показали, что газ образует облака неправильной формы с температурой в несколько сотен кельвинов и более разреженную и горячую межоблачную среду. Полная масса атомарного газа в галактике достигает нескольких миллиардов масс Солнца.

В наиболее плотных облаках газ охлаждается, отдельные атомы объединяются в молекулы, и газ становится молекулярным. Самая распространенная молекула – Н2 – не излучает ни в радио, ни в оптическом диапазоне (хотя у этих молекул есть линии поглощения в ультрафиолетовой области), и обнаружить молекулярный водород чрезвычайно трудно. К счастью, вместе с молекулярным водородом возникают десятки других молекул, содержащих более тяжелые элементы – такие как углерод, азот и кислород. По их радиоизлучению на определенных, хорошо известных частотах оценивается масса молекулярного газа. Пыль делает молекулярные облака непрозрачными для света, и именно они видны как темные пятна (прожилки) на более светлом фоне эмиссионных туманностей.

Радиоастрономические наблюдения позволили обнаружить в межзвездном пространстве довольно сложные молекулы: гидроксил OH; пары воды H2O и аммиака NH, формальдегид H2CO, окись углерода CO, метанол (древесный спирт) CH3OH, этиловый (винный) спирт CH3CH2OH и еще десятки других, даже более сложных молекул. Все они найдены в плотных и холодных газопылевых облаках, пыль в которых защищает хрупкие молекулы от разрушающего влияния ультрафиолетового излучения горячих звезд. Вероятно, поверхность холодных пылинок служит как раз тем местом, где образуются сложные молекулы из налипших на пылинку отдельных атомов. Чем плотнее и массивнее облако, тем большее разнообразие молекул в нем обнаруживается.

Молекулярные облака очень разнообразны.

Некоторые небольшие облачка мы видим интенсивно «испаряющимися» под действием света близких звезд. Существуют, однако, и гигантские очень холодные облака с массой, превышающей миллион масс Солнца (подобных образований в нашей Галактике больше сотни). Такие облака называются гигантскими молекулярными облаками. Для них существенным является собственное гравитационное поле, удерживающее газ от расширения. Температура в их недрах лишь на несколько кельвинов выше абсолютного нуля.

Молодые горячие звезды могут своим коротковолновым излучением нагревать и разрушать молекулярные облака. Особенно много энергии выделяется и сообщается межзвездному газу при взрывах сверхновых, а также веществом, интенсивно истекающим из атмосфер горячих звезд большой светимости (звездным ветром массивных звезд). Газ расширяется и нагревается до миллиона и более градусов. Эта горячая разреженная среда образует гигантские «пузыри» в более холодном межзвездном газе, размеры которых иногда составляют сотни световых лет. Такой газ часто называют «корональным» – по аналогии с газом горячей солнечной короны, хотя межзвездный горячий газ на несколько порядков разреженнее, чем газ короны. Наблюдается такой горячий газ по слабому тепловому рентгеновскому излучению или по ультрафиолетовым линиям, принадлежащим некоторым частично ионизованным элементам.

Молекулярное облако

В течение нескольких миллионов лет свет от ярких звёзд разрушит это молекулярное облако газа и пыли. Облако отделилось от туманности Киля. Вблизи видны недавно сформированные звезды, их изображения окрашены в красный цвет, т.к. синий свет рассеивается пылью. Это изображение охватывает приблизительно два световых года и было сделано орбитальным космическим телескопом «Хаббл» в 1999 году.

Молекулярное облако, иногда называемое также звёздная колыбель (в случае, если в нём рождаются звёзды), — тип межзвёздного облака, чья плотность и размер позволяют в нём образовываться молекулам, обычно водорода (H2).

Молекулярный водород трудно зарегистрировать при помощи инфракрасных или радионаблюдений, поэтому для определения наличия H2 используют другую молекулу – CO (монооксид углерода). Соотношение между светимостью CO и массой H2, как полагают, остаётся постоянным, хотя есть причины сомневаться в правдивости этого в некоторых галактиках.

Типы молекулярных облаков

Гигантские молекулярные облака

Обширные области молекулярного газа с массами 104—106 солнечных масс называется гигантскими молекулярными облаками (ГМО). Облака могут достигнуть десятков парсек в диаметре и иметь среднюю плотность 10²—10³ частиц в кубическом сантиметре (средняя плотность вблизи Солнца — одна частица в кубическом сантиметре). Подструктура в пределах этих облаков состоит из сложных переплетений нитей, листов, пузырей, и нерегулярных глыб.

Самые плотные части нитей и глыб называют «молекулярными ядрами», а молекулярные ядра с максимальной плотностью (больше 104—106 частиц в кубическом сантиметре), соответственно, «плотными молекулярными ядрами». При наблюдениях молекулярные ядра связывают с угарным газом, а плотные ядра — с аммиаком. Концентрация пыли в пределах молекулярных ядер обычно достаточна, чтобы поглощать свет от дальних звёзд таким образом, чтобы они выглядели как тёмные туманности.

ГМО настолько огромны, что локально они могут закрывать значительную часть созвездия, в связи с чем на них ссылаются с упоминанием этого созвездия, например, Облако Ориона или Облако Тельца. Эти локальные ГМО выстраиваются в кольцо вокруг солнца, называемого поясом Гулда. Самая массивная коллекция молекулярных облаков в галактике, комплекс Стрелец B2, формирует кольцо вокруг галактического центра в радиусе 120 парсек. Область созвездия Стрельца богата химическими элементами и часто используется астрономами, ищущими новые молекулы в межзвёздном пространстве, как образец.

Маленькие молекулярные облака

Изолированные гравитационно связанные маленькие молекулярные облака с массами меньше чем несколько сотен масс Солнца называют глобулой Бока. Самые плотные части маленьких молекулярных облаков эквивалентны молекулярным ядрам, найденным в гигантских молекулярных облаках и часто включаются в те же самые исследования.

Высокоширотные диффузные молекулярные облака

В 1984 году космический телескоп “IRAS” идентифицировал новый тип диффузного молекулярного облака. Они были диффузными волокнистыми облаками, которые видимы при высокой галактической широте (выглядывающий из плоскости галактического диска). У этих облаков была типичная плотность 30 частиц в кубическом сантиметре.

Область H I

Область H I — межзвёздное облако, состоящее из атомарного водорода (H I). Эти области являются неизлучающими, за исключением эмиссии на длине волны 21 см (1 420 МГц) (Линия водорода). У этой линии очень низкая вероятность перехода, поэтому требуется большое количество водородного газа для того, чтобы её заметить. Области H I становятся намного ярче на фронтах ионизации, где они (области) сталкиваются с расширяющимся ионизированным газом (например, из областей H II). Степень ионизации в области H I очень мала — в пределах 10−4 (то есть одна частица на 10 000).

Если наносить на карту излучения областей H I, полученные с помощью радиотелескопов, можно определять структуру спиральных галактик. Этот метод используется также для нанесения на карту гравитационных возмущений между галактиками. Когда две галактики сталкиваются, вещество из них выталкивается в виде нитей, позволяя астрономам определить, по какому пути перемещались галактики.

Область H II

Область (зона) H II, или область ионизированного водорода (разновидность эмиссионной туманности) — это облако горячей плазмы, достигающее нескольких сотен световых лет в поперечнике, являющееся областью активного звездообразования. В этой области рождаются молодые горячие голубовато-белые звёзды, которые обильно излучают ультрафиолетовый свет, тем самым ионизируя окружающую туманность.

Области H II могут рождать тысячи звёзд за период всего в несколько миллионов лет. В конце концов, взрывы сверхновых и мощный звёздный ветер, исходящий от наиболее массивных звёзд в образовавшемся звёздном скоплении, рассеивают газы этой области, и она превращается в группу наподобие Плеяд.

Эти области получили своё название из-за большого количества ионизированного атомарного водорода, обозначаемого астрономами как H II (область H I — зона нейтрального водорода, а H2 обозначает молекулярный водород)

Их можно заметить на значительных расстояниях по всей Вселенной, и изучение таких областей, находящихся в других галактиках, важно для определения расстояния до последних, а также их химического состава

Глоссарий по физике


А  
Б  
В  
Г  
Д  
Е  
Ж  
З  
И  
К  
Л  
М  
Н  
О  
П  
Р  
С  
Т  
У  
Ф  
Х  
Ц  
Ч  
Ш  
Э  
Ю  
Я  

Межгалактический газ

Межгалактический газ — газовая компонента заполняющего Вселенную вещества, не входящая в галактики. M. г. наблюдается
в окрестностях (коронах) галактик, скоплениях, сверхскоплениях, цепочках
галактик и в больших областях, не содержащих галактик, расположенных между элементами
крупномасштабной структуры Вселенной — сверхскопленнями и цепочками галактик.

В коронах галактик (па расстояниях до 100 кпк
от галактик) горячий газ с температурой
и концентрацией частицнаблюдается
по линиям поглощения тяжёлых элементов в оп-тич. спектрах источников, «просвечивающих»
корону. В нек-рых случаях — по его тепловому радио- и рентг. излучению. Облака
нейтрального водорода (HI) в окрестностях галактик обнаружены по радиолинии
водорода 21 см (как в излучении, так и в поглощении). Отдельные облака HI
регистрируются по поглощению в линии 21 см в спектрах квазаров вплоть до красных
смещений В
скоплениях галактик горячий газ с
температурой ок. 107 К иобнаружен
по тепловому излучению в рентг. диапазоне.
Газ, входящий в сверхсконления и цепочки галактик, нагрет дои
наблюдается только по линиям поглощения
в спектрах квазаров и других удалённых точечных источников.

В спектрах далёких квазаров наблюдается «лес»
линий поглощения, интерпретируемый как поглощение в водородной линии(смещённой
из-за эффекта Доплера) маломассивными газовыми облаками, состоящими из ионизованного
водорода с примесью нейтрального. В ряде случаев эта интерпретация подтверждается
изучением отдельных участков абсорбционных спектров с разрешением по скоростям
до 15-20 км/с. Однородная компонента нейтрального водорода не наблюдается при
и ей концентрация не превосходит значения
Появились указания на заметный рост концентрации этой компоненты при

Межгалактический газ сильно ионизован. Облака нейтрального водорода
наблюдаются только в окрестностях галактик. В коронах и скоплениях галактик
ионизация связана с высокой температурой газа. Газ, расположенный вдали от галактик,
вероятно, был ионизован излучением квазаров и молодых галактик в период их образования.
При низкой плотности этот газ не успел рекомбиниро-вать и сохранил высокую степень
ионизации. В скоплениях и коронах галактик M. г. содержит тяжёлые элементы (вплоть
до железа) с относительной концентрацией, прибл. в 10 раз меньшей, чем на Солнце.
Это связано с частичным перемешиванием межгалактического газа с
внутригалактическим газом. Состав газа вдали от галактик неизвестен.

Согласно оценкам, на долю обычного вещества (барионная
компонента) приходится 10-15% массы Вселенной, причём в галактики входит лишь
20-30% барионной компоненты. Остальные 80-70%
составляет M. г. Плотность светящегося вещества (галактики) определяется по
измерениям ср. светимости единицы объёма с учётом ср. наблюдаемой масса-светимость
зависимости для галактик. Cp. плотность барпонной компоненты оценивается
в рамках теории первичного (космологич.) нуклеосинтеза по наблюдаемому обилию
4He, 2Н, и 7Li (см. Космология ).Однако
эти оценки зависят от принятых моделей и их точность невысока.

Литература по межгалактическому газу

  1. Cooling flows in clusters and Galaxies, ed. by A. C. Fabian Dordrecht — , 1988.

А. Г. Дорошкевич


к библиотеке  
к оглавлению  
FAQ по эфирной физике  
ТОЭЭ  
ТЭЦ  
ТПОИ  
ТИ  

Знаете ли Вы, что релятивистское объяснение феномену CMB (космическому микроволновому излучению) придумал человек выдающейся фантазии Иосиф Шкловский (помните книжку миллионного тиража «Вселенная, жизнь, разум»?). Он выдвинул совершенно абсурдную идею, заключавшуюся в том, что это есть «реликтовое» излучение, оставшееся после «Большого Взрыва», то есть от момента «рождения» Вселенной. Хотя из простой логики следует, что Вселенная есть всё, а значит, у нее нет ни начала, ни конца… Подробнее читайте в FAQ по эфирной физике.

Общие сведения

Ближайшие окрестности Солнца

Вселенские просторы, в которых светила занимают ничтожно малую часть, далеко не так пустынны, как считалось долгое время. Хотя и в небольших количествах, но везде присутствует межзвездный газ, наполняя собой все уголки мирозданья. В эллиптических галактиках его концентрация снижена, в иррегулярных, наоборот, повышена. Он смешан с межзвездной пылью и активно участвует в процессах образования новых звезд, которые в конце своего жизненного цикла возвращают Вселенной этот строительный материал. Таким образом происходит своеобразный обмен веществом между светилами и межзвездным газом. Цикличность этих процессов постепенно приводит к уменьшению его количества в космосе, при увеличении объемов содержания тяжелых элементов в его структуре. Но для существенных изменений в этой области требуются миллиарды лет. По приблизительным оценкам, ежегодное количество газа, задействованное в Галактике при формировании звезд, равняется 5 солнечным массам.

Межзвездная пыль.

Даже беглый взгляд на изображение любой эмиссионной туманности достаточно большого размера позволяет увидеть на ее фоне резкие темные детали – пятна, струи, причудливые «заливы». Это – проектирующиеся на светлую туманность расположенные недалеко от нее небольшие и более плотные облака, непрозрачные вследствие того, что к газу всегда примешена межзвездная пыль, поглощающая свет.

Присутствует пыль и вне газовых облаков, заполняя (вместе с очень разреженным газом) все пространство между ними. Такая распределенная в пространстве пыль приводит к трудно учитываемому ослаблению света далеких звезд. Свет частично поглощается, а частично – рассеивается мелкими твердыми пылинками. Наиболее сильное ослабление наблюдается в направлениях, близких к направлению на Млечный Путь (на плоскость галактического диска). В этих направлениях, пройдя тысячу световых лет, видимый свет ослабляется примерно на 40 процентов. Если учесть, что протяженность нашей Галактики – десятки тысяч световых лет, то становится ясно, что мы можем исследовать звезды галактического диска лишь в небольшой его части. Чем короче длина волны излучения, тем сильнее поглощается свет, в результате чего далекие звезды кажутся покрасневшими. Поэтому межзвездное пространство прозрачнее всего для длинноволнового инфракрасного излучения. Лишь наиболее плотные газопылевые облака остаются непрозрачными даже для инфракрасного света.

Следы космической пыли можно увидеть и без телескопа. В безлунную летнюю или осеннюю ночь хорошо видно «раздвоение» полосы Млечного Пути в области созвездия Лебедя. Оно связано с близкими пылевыми облаками, слой которых закрывает лежащие позади них яркие области Млечного Пути. Можно найти темные участки и в других областях Млечного Пути. Наиболее плотные газопылевые облака, проектируясь на области неба, богатые звездами, выглядят темными пятнами даже в инфракрасном свете.

Иногда вблизи холодных газо-пылевых облаков располагаются яркие звезды. Тогда их свет рассеивается на пылинках и видна «отражательная туманность».

В отличие от эмиссионных туманностей, они имеют непрерывный спектр, как и спектр освещающих их звезд.

Изучая отраженный или прошедший сквозь облако свет звезд, можно многое узнать о частицах пыли. Например, поляризация света говорит о вытянутой форме пылинок, которые приобретают определенную ориентацию под действием межзвездного магнитного поля. Твердые частицы космической пыли имеют размер порядка 0,1–1 мкм. Вероятно, у них железо-силикатное или графитовое ядрышко, покрытое ледяной «шубой» из легких элементов. Графитовые и силикатные ядрышки пылинок, по-видимому, образуются в относительно прохладных атмосферах звезд-гигантов и выбрасываются затем в межзвездное пространство, где остывают и покрываются шубой из летучих элементов.

Полная масса пыли в Галактике составляет не более 1% от массы межзвездного газа, но и это немало, поскольку эквивалентно массе десятков миллионов таких звезд как Солнце.

Поглощая световую энергию звезд, пыль нагревается до небольшой температуры (обычно – на несколько десятков градусов выше абсолютного нуля), а излучает поглощенную энергию в форме очень длинноволнового инфракрасного излучения, которое на шкале электромагнитных волн занимает промежуточное положение между оптическим и радио диапазонами (длина волны – десятки и сотни микрометров). Это излучение, принимаемое телескопами, установленными на специализированных космических аппаратах, дает неоценимую информацию о массе пыли и источниках ее нагрева в нашей и других галактиках.

Еще одна загадка Вселенной

Вскоре после Большого взрыва Вселенная была заполнена газом, в основном водородом. Со временем, то тут то там, гравитация стала стягивать газ к облакам, которые впоследствии превратились в галактики внутри которых родились звезды. Знаете по какой причине сияют звезды? Все дело в термоядерном горении водорода — те звезды, что превращаются в сверхновые и погибают после взрыва “выталкивают” газ обратно из галактик.

Там, в таинственном межгалактическом пространстве, газ охлаждается и становится плотнее. Там он и находится, пока сила гравитации не втягивает его обратно в галактику, где образуются новые звезды. Процесс повторяется: гравитация конденсирует газ в галактики и звезды, звезды взрываются и выбрасывают газ, гравитация снова притягивает газ и рождаются новые звезды.

Телескоп Hubble сделал снимок взрыва сверхновой

Со временем в любой галактике начинает заканчиваться перерабатываемый газ. А без газа во Вселенной не могут образовываться новые звезды; старые звезды живут своей жизнью и умирают, и в конечном итоге галактика тоже умирает. Галактики обитают в так называемой газовой ванне, среде, из которой они родились, и которая питает их. Галактики вдыхают и выдыхают газ, а звезды продолжают гореть, пока газ не исчезнет. Красиво звучит, правда?

Выводы ученых об исследовании межзвездного пространства

Ли и соавторы (2012) выводят аналитическое решение для гиперболических траекторий отдельных нейтральных атомов, которыми заполнено межзвездное пространство. Они используют теорему Лиувилля, включающую солнечную гравитацию и радиационное давление, фотоионизацию и перезарядку для создания межзвездного распределения нейтрального атома в фазовом пространстве.

Эти распределения затем преобразуются в систему отсчета
IBEX и интегрируются в инструментальную приемку прибора IBEX-Lo, чтобы
обеспечить аналитическое решение для предсказанных моментов межзвездных
распределений нейтральных атомов.

Мебиус и соавторы (2012) сравнивают распределения потоков He и O + Ne для 2009 и 2010 гг. И находят параметры межзвездного потока эклиптической долготы при ∞ = 79,0 ° + 3,0 ° / -3,5 °, эклиптической широты при ∞ = -4,9 ° ± 0,2 °, скорость ISM при ∞ = 23,5 + 3,0 / -2,0 км с -1 и нейтральная температура He в межзвездном пространстве  = 5000-8200 K. Они также находят объединенную температуру O + Ne 5300-9000 K, что согласуется с изотермической средой для He, O и Ne.

Бзовски и соавторы (2012) разработали и всесторонне
протестировали  прямое моделирование
распространения межзвездного гелия (He), потерь и измерений в приборе IBEX-Lo.
Это моделирование запускает частицы при 150 а.е. и включает в себя более
детальную физику, чем аналитические решения; поэтому они дополняют
аналитический метод, позволяя детально отображать многомерное пространство
возможных решений.

Эти авторы показывают, что новые наиболее подходящие значения эклиптической долготы 79,2 °, эклиптической широты -5,1 °, скорости ~ 22,8 км с -1 и температура Не в межзвездном пространстве составляет 6200 К.

Значения, полученные обоими дополнительными методами, согласуются друг с другом и согласуются с вектором потока локального межзвездного облака, полученного в результате исследований межзвездного поглощения (Redfield & Linsky 2008). Бзовски и соавторы также нашли доказательства ранее неизвестной и непредвиденной вторичной популяции гелия.

Вместе Möbius (2012) и Bzowski (2012)разработали новое
направление межзвездного потока и значительно более низкую скорость
поступающего газа. Следовательно ниже динамическое давление на гелиосферу, что
приводит к гелиосферному взаимодействию. Оно (взаимодействие) еще меньше
подчиняется внешнему динамическому давлению и лежит прямо в средней части
астросфер, где преобладают внешние магнитные и динамические давления (McComas 2009).

Наконец, Саул и соавторы (2012) предоставляют первый
подробный анализ новых межзвездных измерений от IBEX. Эти авторы подтверждают,
что направление прибытия межзвездного водорода (H) смещено от направления гелия
(He). Кроме того, они показывают изменение силы радиационного давления и,
следовательно, изменение видимого направления прибытия H, проникающего до 1
а.е. между первыми двумя годами наблюдений IBEX.

Эти результаты согласуются с изменениями солнечного цикла
в радиационном давлении, которое работает против гравитационной силы Солнца и
влияет на проникновение Н во внутреннюю гелиосферу.

Все эти исследования дают первый подробный анализ многокомпонентной локальной межзвездной среды. Она сильно взаимодействует с нашей гелиосферой, на которую действует не только солнечный свет, но и другие компоненты галактики.

Вы можете обсудить эту статью на нашем форуме, достаточно нажать на кнопку ниже.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector