Лазерная указка: возможности в бою

Принцип действия

Физической основой работы лазера служит явление вынужденного (индуцированного) излучения. Суть явления состоит в том, что возбуждённый атом способен излучить фотон под действием другого фотона без его поглощения, если энергия последнего равняется разности энергий уровней атома до и после излучения. При этом излучённый фотон когерентен фотону, вызвавшему излучение (является его «точной копией»). Таким образом происходит усиление света. Этим явление отличается от спонтанного излучения, в котором излучаемые фотоны имеют случайные направления распространения, поляризацию и фазу.

Гелий-неоновый лазер. Светящаяся область в центре — это не лазерный луч, а свечение электрического разряда в газе, возникающее подобно тому, как это происходит в неоновых лампах. Собственно лазерный луч проецируется на экран справа в виде красной точки.

Вероятность того, что случайный фотон вызовет индуцированное излучение возбуждённого атома, в точности равняется вероятности поглощения этого фотона атомом, находящимся в невозбуждённом состоянии. Поэтому для усиления света необходимо, чтобы возбуждённых атомов в среде было больше, чем невозбуждённых (так называемая инверсия населённостей). В состоянии термодинамического равновесия это условие не выполняется, поэтому используются различные системы накачки активной среды лазера (оптические, электрические, химические и др.).

Первоисточником генерации является процесс спонтанного излучения, поэтому для обеспечения преемственности поколений фотонов необходимо существование положительной обратной связи, за счёт которой излучённые фотоны вызывают последующие акты индуцированного излучения. Для этого активная среда лазера помещается в оптический резонатор. В простейшем случае он представляет собой два зеркала, одно из которых полупрозрачное — через него луч лазера частично выходит из резонатора. Отражаясь от зеркал, пучок излучения многократно проходит по резонатору, вызывая в нём индуцированные переходы. Излучение может быть как непрерывным, так и импульсным. При этом, используя различные приборы (вращающиеся призмы, ячейки Керра и др.) для быстрого выключения и включения обратной связи и уменьшения тем самым периода импульсов, возможно создать условия для генерации излучения очень большой мощности (так называемые гигантские импульсы). Этот режим работы лазера называют режимом модулированной добротности.

Генерируемое лазером излучение является монохроматическим (одной или дискретного набора длин волн), поскольку вероятность излучения фотона определённой длины волны больше, чем близко расположенной, связанной с уширением спектральной линии, а, соответственно, и вероятность индуцированных переходов на этой частоте тоже имеет максимум. Поэтому постепенно в процессе генерации фотоны данной длины волны будут доминировать над всеми остальными фотонами. Кроме этого, из-за особого расположения зеркал в лазерном луче сохраняются лишь те фотоны, которые распространяются в направлении, параллельном оптической оси резонатора на небольшом расстоянии от неё, остальные фотоны быстро покидают объём резонатора. Таким образом луч лазера имеет очень малый угол расходимости. Наконец, луч лазера имеет строго определённую поляризацию. Для этого в резонатор вводят различные поляризаторы, например, ими могут служить плоские стеклянные пластинки, установленные под углом Брюстера к направлению распространения луча лазера.

Классификация лазеров[править | править код]

Основная статья:

  • Твердотельные лазеры
    • Кристаллические лазеры с иттербиевым легированием, такие как Yb:YAG, Yb:KGW, Yb:KYW, Yb:SYS, Yb:BOYS, Yb:CaF2, или на основе иттербиевого стекловолокна; обычно работают в диапазоне 1020—1050 нм; потенциально самые высокоэффективные благодаря малому квантовому дефекту; наибольшая мощность сверхкоротких импульсов достигнута на Yb:YAG-лазере. Волоконные лазеры с иттербиевым легированием обладают рекордной непрерывной мощностью среди твердотельных лазеров (десятки киловатт)
    • алюмо-иттриевые с эрбиевым легированием, 1645 нм
    • алюмо-иттриевые с тулиевым легированием, 2015 нм
    • алюмо-иттриевые с гольмиевым легированием, 2096 нм, Эффективный ИК-лазер, излучение поглощается влажными материалами толщиной менее 1 мм. Обычно работает в импульсном режиме и используется в медицине.
    • Лазеры на эрбиевом стекле, изготавливаются из специального оптоволокна и используются как усилители в оптических линиях связи.
    • Микрочиповые лазеры. Компактные интегрированные импульсные твердотельные лазеры, наиболее широко используются в сверхъярких лазерных указках
  • Лазеры на свободных электронах(FEL)

Расшифровка обозначений

Питание, драйверы, батарейки и аккумуляторы

Лазерный диод может питаться напрямую от батареи только при очень малой мощности. Для диодов от 50 милливатт требуется специализированный блок питания. Главная его функция — стабилизация напряжения. Даже изменение на 0,1 вольт может резко сократить срок службы лазерного диода.

Тип блока питания определяет мощность лазерной указки. Он всегда делается с запасом мощности. Кстати, блок питания является одним из самых простых и дешевых элементов указки. Типовой вариант — простой драйвер питания на круглой плате поперек корпуса. Точно так же делаются блоки питания светодиодных фонариков или, наоборот, повышающие преобразователи, например, для компактных люминесцентных ламп. Из аккумуляторов используются 18650, 16340, 32650. Батарейки — обычные АА, ААА, С и D. В указках-брелках часто встречаются часовые батарейки.

Что такое лазер?

Дата
Категория: Физика

Лазер — это устройство, создающее узкий пучок интенсивного света. В работе лазера используется свойство электронов атома занимать только определенные орбиты вокруг своего ядра. Когда атом получает квант энергии, он может перейти в возбужденное состояние, которое характеризуется перемещением электронов с самой низкой энергетической орбиты (так называемый основной уровень) на орбиту с более высоким энергетическим уровнем.

Однако электроны не могут долго оставаться на орбите с высокой энергией и самопроизвольно возвращаются на основной уровень, при этом каждый такой электрон испускает фотон (световую волну). Процесс, начавшийся в одном атоме, запускает цепную реакцию перехода электронов других атомов на более низкие энергетические орбиты, в результате чего образуется лавина одинаковых световых волн, согласованно изменяющихся во времени. Эти волны формируют световой луч, который у некоторых лазеров имеет столь высокую мощность, что может резать камни и металлы. Изобретенные в 1960 году, лазеры имеют сейчас очень широкую сферу применения, начиная от медицины (для удаления опухолей) и заканчивая музыкой (для записи и считывания сигналов на компакт-дисках).

Твердотельный лазер

Типичный лазер состоит из трубки с твердым кристаллом, например, рубином (рисунок сверху), закрытой с торцов непрозрачным и частично прозрачным зеркалами. Электрическая обмотка возбуждает атомы кристалла для генерации световых волн, которые перемещаются между зеркалами до тех пор, пока не станут достаточно интенсивными, чтобы пройти через частично прозрачное зеркало.

Создание лазерного луча

1. Электроны каждого атома {на рисунке справа черные точки на внутренних окружностях) в выключенном лазере находятся на основном энергетическом уровне.

2. Сразу же после включения лазера энергия из разрядной трубки переводит электроны на более высокие энергетические орбиты {внешние окружности).

3. Когда электроны начинают возвращаться на основной уровень, они испускают свет, побуждая другие электроны делать то же самое. Результирующий световой пучок имеет одну длину волны и, по мере возвращения новых электронов на низкие орбиты, становится все более мощным.

Более резкий фокус

1. Лазерное излучение (один цвет) 2. Естественный свет (много цветов)

Лазерный пучок содержит свет только одной длины волны и может быть сфокусирован линзой практически в точку (рисунок справа). Естественный свет, состоящий из лучей с различными длинами волн, так резко не фокусируется (дальний рисунок справа). Способность концентрировать огромную энергию в узком луче и передавать этот луч на большие расстояния практически без рассеяния и ослабления, характерных для многоцветного света, делает лазер важнейшим инструментом в руках человека.

Александритовый лазер

Данный лазер генерирует волну длиной в 755 нм. Получается, что она пролегает в области между максимальным поглощением меланином и минимальным поглощением гемоглобином. Длительность импульсов может колебаться от 0,25 до 300 мс. Александритовый лазер значительно быстрее рубинового, и его частота импульсных повторений составляет 10 Гц. За один импульс на ткани попадает энергия в 100 Дж/см².

Ограничения составляют типы кожи с первого по четвёртый по Фицпатрику. Но, казалось, какой малоэффективный лазер бы это ни был, он лучше всего удаляет светлые волосы, содержащие мало меланина.

Не существует научного подтверждения того, что на результат лазерной эпиляции влияет продолжительность импульса.

Данные Nanni и Alster показывают, что после первого месяца процедур александритовым лазером волосяной покров у испытуемых снизился до 66%. Через три месяца показатель составил 27%, а через полгода – 4%. В данном случае также не были отмечены существенные различия между результатами процедур лазером с длиной импульса 5,10 и 20 мс.

Если сравнивать все виды лазеров для эпиляции, александритовый – самый эффективный для удаления темных волос. Он заслуженно является «золотым стандартом» для эпиляции светлых типов кожи.

Твердотельные лазеры

Рабочее тело Длина волны Источник накачки Применение
Рубиновый лазер 694,3 нм Импульсная лампа Голография, удаление татуировок. Первый представленный тип лазера ().
Алюмо-иттриевые лазеры с легированием неодимом (Nd:YAG) 1,064 мкм, (1,32 мкм) Импульсная лампа, лазерный диод Обработка материалов, лазерные дальномеры, лазерные целеуказатели, хирургия, научные исследования, накачка других лазеров. Один из самых распространённых лазеров высокой мощности. Обычно работает в импульсном режиме (доли наносекунд). Нередко используется в сочетании с удвоителем частоты и соответственным изменением длины волны на 532 нм. Известны конструкции с квазинепрерывным режимом излучения.
Лазер на фториде иттрия-лития с легированием неодимом (Nd:YLF) 1,047 и 1,053 мкм Импульсная лампа, лазерный диод Наиболее часто используются для накачки титан-сапфировых лазеров, используя эффект удвоения частоты в нелинейной оптике.
Лазер на ванадате иттрия (YVO4) с легированием неодимом (Nd:YVO) 1,064 мкм Лазерные диоды Наиболее часто используются для накачки титан-сапфировых лазеров, используя эффект удвоения частоты в нелинейной оптике.
Лазер на неодимовом стекле (Nd:Glass) ~1,062 мкм (Силикатные стёкла), ~1,054 мкм (Фосфатные стёкла) Импульсная лампа, Лазерные диоды Лазеры сверхвысокой мощности (тераватты) и энергии (мегаджоули). Обычно работают в нелинейном режиме утроения частоты до 351 нм в устройствах лазерной плавки. Лазерный термоядерный синтез (ЛТС). Накачка рентгеновских лазеров.
Титан-сапфировый лазер 650—1100 нм Другой лазер Спектроскопия, лазерные дальномеры, научные исследования.
Алюмо-иттриевые лазеры с легированием тулием (Tm:YAG) 2,0 мкм Лазерные диоды Лазерные радары
Алюмо-иттриевые лазеры с легированием иттербием (Yb:YAG) 1,03 мкм Импульсная лампа, Лазерные диоды Обработка материалов, исследование сверхкоротких импульсов, мультифотонная микроскопия, лазерные дальномеры.
Алюмо-иттриевые лазеры с легированием гольмием (Ho:YAG) 2,1 мкм Лазерные диоды Медицина
Церий-легированный литий-стронций (или кальций)-алюмо-фторидный лазер (Ce:LiSAF, Ce:LiCAF) ~280-316 нм Лазер Nd:YAG с учетверением частоты, Эксимерный лазер, лазер на парах ртути. Исследование атмосферы, лазерные дальномеры, научные разработки.
Лазер на александрите с легированием хромом Настраивается в диапазоне от 700 до 820 нм Импульсная лампа, Лазерные диоды. Для непрерывного режима — дуговая ртутная лампа Дерматология, лазерные дальномеры.
Волоконный лазер с легированием эрбием 1,53-1,56 мкм Лазерные диоды Оптические усилители в волоконно-оптических линиях связи, обработка металлов (резка, сварка, гравировка), термораскалывание стекла, медицина, косметология.
Лазеры на фториде кальция, легированном ураном (U:CaF2) 2,5 мкм Импульсная лампа Первый 4-х уровневый твердотельный лазер, второй работающий тип лазера (после рубинового лазера Маймана), охлаждался жидким гелием, сегодня нигде не используется.
Лазеры на халькогенидах цинка/кадмия, легированных переходными металлами (хромом,железом) (TM2+:AIIBVI, Cr2+:ZnSe, Fe2+:ZnSe) Cr2+ 1,9-3,6 мкм, Fe2+ 4-5.5 мкм для Cr2+-легированной активной среды — лазерный диод, эрбиевый или тулиевый волоконные лазеры, для Fe2+-легированной активной среды — Er:YAG лазер (2,94 мкм) Твердотельные лазеры с широкой полосой перестройки, генерация фемтосекундных лазерных импульсов

Выбор лазерных указок: на что обратить внимание

  • Мощность — ключевой критерий. Она обозначается в милливаттах и прямо влияет на цену. Выше мощность — выше цена и общая сложность изделия. У более мощных лазерных диодов меньше срок службы. Они интенсивно нагреваются во время работы, и их световая отдача быстрее падает;
  • Питание. Сменные аккумуляторы — лучший вариант. Лазерные указки с питанием от часовых батареек совершенно не подходят для продолжительной эксплуатации. Другой хороший вариант — унифицированные батарейки АА и ААА. Они подходят для нечастого применения. Если лазер берется в качестве редко используемой игрушки, то пальчиковые батарейки — лучший вариант. Аккумуляторы оправданны только при частом применении, либо, если у вас есть другое устройство, которое работает на таких же аккумуляторах. Тогда их можно будет быстро переставить;
  • Корпус и теплоотвод. Литой алюминиевый корпус — лучший теплоотвод. Жестяной и пластиковый корпус применим только для маломощных моделей.

Очень важен режим регулируемой мощности. Это позволит лазерному диоду работать в более щадящем режиме, и он послужит дольше. Также регулируемая мощность добавляет новые функции, например, для кота нужно ставить самый слабомощный режим. Кошки хорошо реагируют на красный и зеленый лазер

Меры предосторожности здесь такие же как и с людьми. Глаз кошачьих точно также незащищен от лазеров, как и человеческий

Какие возможности открывает мощный лазер?

  • Сигнализация на дальние расстояния. Мощный лазер может заменить собой пиротехнические сигнальные средства. Особенно он эффективен в горной местности при хорошей видимости из населенных пунктов;
  • Проведение измерений больших расстояний. Например, лазерной указкой green laser на 10 Вт можно провести замер кривизны земной поверхности;
  • Использование мощного лазера в качестве источника света для стробоскопов и других развлекательных приборов. Оптические насадки для деления луча, высвечивания различных фигур и надписей выпускаются в бесчисленном многообразии. В них всегда можно найти самые неожиданные варианты;
  • Лазерный тир с прожиганием шариков лазером. Устройство работает лишь на небольшом расстоянии;
  • Лазерная ограда на большие расстояния. Фотореле, самодельные лидары, оптические станции связи и другие приборы.

Отдельное направление связано с использованием мощных лазерных указов для гравировки. На это годятся только самые мощные модели свыше 10 Вт. Гравировка возможна на мягких материалах, например, на древесине.

Фигурное выжигание

Тем не менее в сознании большин­ства читателей лазеры ассоциируются с «прожигающим» лучом. И вполне справедливо: станки с лазерным раскроем работают на множестве производств, разрезая самые различные материалы — от полимерных пленок до стальных листов. Правда, и мощность лазеров там исчисляется вовсе не милливаттами. Впрочем, прогресс в этой области шагнул настолько далеко, что в настоящее время такой станок можно построить и в домашних условиях. Для этого идеальны мощные полупроводниковые фиолетовые (405 нм) и сине-фиолетовые лазеры (445 нм). Они отличаются хорошим соотношением цены и мощности, а их излучение хорошо поглощается большинством материалов. К тому же, как правило, производители предусматривают в таких портативных лазерах (называть их указками уже не совсем корректно) возможность регулировать фокусировку луча.

Технологии
Когда 3 мало, а 6 — уже много: почему у автомобиля 4 колеса


Лазерный арсенал

Самым интересным из попавших в наши руки однозначно стал сине-фиолетовый (445 нм) лазер мощно­стью 1 Вт. При тщательном соблюдении техники безопасности этот лазер может стать инструментом для множества научно-популярных экспериментов и отличным развлечением. Необычный цвет, высокая стабильность, регулируемая фокусировка и сокрушающая мощь способны на долгое время заставить забыть обо всех других лазерах! Его луч прекрасно виден в вечернем небе, отраженный от потолка свет легко освещает довольно большую комнату, а при соответствующей фокусировке он легко режет бумагу и за пару минут даже может проделать отверстие в дереве толщиной более 3 мм. К тому же такие лазеры принципиально имеют довольно большую расходимость — в 3−10 раз больше, чем у других типов, но в данном случае это скорее плюс, поскольку снижает опасность для окружающих. Впрочем, большая мощность и малая длина волны приводят к высокой опасности для зрения даже при наблюдении отраженного и рассеянного света, поэтому при работе с этим лазером нужно обязательно использовать защитные очки, отсекающие большую часть опасного излучения.

В качестве импровизированной защиты можно использовать стандартные очки с желтыми фильтрами для повышения контраста (например, стрелковые).

Фиолетовые (405 нм) лазеры мощнее 300 мВт сейчас найти затруднительно, но за счет лучшей фокусировки по своим «зажигательным» способностям они весьма близки к 1-Вт сине-фиолетовому (445 нм) лазеру. На расстоянии 5−10 м 300-мВт фиолетовая указка догоняет одноваттного монстра, а далее и вовсе обходит и при этом стоит дешевле. Однако и прожечь что-нибудь на таком расстоянии можно только в том случае, если и лазер, и мишень будут закреплены неподвижно. Так что пока лазерные копья Звездной Гвардии остаются уделом фантастических сериалов. Кроме выжигания, фиолетовая указка интересна тем, что заставляет ярко светиться многие материалы, подобно ультрафиолетовой лампе. Для защиты зрения от отраженного и рассеянного света также подойдут очки с желтыми светофильтрами.


Испытать всю испепеляющую мощь одноваттной указки мы решили на современный манер, построив двухкоординатный выжигательный станок с ЧПУ из конструктора Fischertechnik. За основу мы взяли набор ROBO TX Automation Robots, укомплектовав его компьютерным контроллером ROBO TX. Несмотря на слегка игрушечный вид, это серьезный контроллер с исчерпывающим набором входов и выходов для сервоприводов, световых индикаторов, переключателей, сенсоров (фоторезистор, ультразвуковой радар, датчик цвета, микрофон). Контроллер подключается к компьютеру по USB или Bluetooth. Мы запрограммировали станок на точечное выжигание: на каждом «пикселе» рисунка указка задерживалась на 5 секунд и успевала прожечь отчетливое черное пятно, после чего лазерный луч смещался на шаг и продолжал выжигание. Работу несколько осложнил тот факт, что во избежание перегрева указка не должна непрерывно работать дольше 30 секунд, поэтому каждые полминуты приходилось ставить программу на паузу. Выжигание простого рисунка заняло у нас чуть больше часа.

Использование лазерных указок

  • Лазерные указки обычно используются в образовательных учреждениях и на бизнес-презентациях вместо обычных указок. Бывают встроены в ПДУ проекторов или компьютерные ПДУ для презентаций. Красные лазерные указки могут использоваться в помещениях и вечером на открытых пространствах. Зеленые лазерные указки могут использоваться в тех же условиях, но они, в отличие от красных, хорошо видны на улице днем и на дальних расстояниях. Единственным недостатком лазерных указок при указывании на цель являются рывки точки, так как человеческая рука не может долго находиться в неподвижном состоянии из-за тремора. В будущих моделях некоторых лазерных указок планируется внедрить стабилизацию точки [источник не указан 1318 дней] , сейчас же возможным решением проблемы является использование подходящих кондукторов.
  • Световое пятно, образуемое лазерной указкой, привлекает кошек, собак и других домашних животных, вызывая сильное стремление поймать его, что нередко используется людьми в играх с этими домашними животными. Не следует забывать, что луч лазерной указки, направленный в глаза человека или животного, может повредить сетчатку.
  • Зелёные лазерные указки могут использоваться для любительской астрономии. В безлунную ночь луч зелёной лазерной указки может использоваться для указывания на звезды и созвездия.
  • Точно установленная лазерная указка может использоваться как лазерный прицел, чтобы нацелить огнестрельное или пневматическое оружие.
  • Лазерные указки используют в своих конструкциях радиолюбители, в качестве элемента связи в пределах видимости.
  • Указка со снятым коллиматором используется в любительской голографии. Это единственное известное применение лазера в быту, где используется именно наиболее ценное свойство лазера, в корне отличающее его от светодиода — когерентность излучения.

Принцип действия лазерного удаления волос

Чтобы понять подходит ли вам лазерная эпиляция и какой из ее видов лучше, необходимо разобраться в сути процедуры.

Лазерная эпиляция – это удаление волос путем нагрева фолликула волоса. Способный проникать глубоко под кожу, лазерный луч уничтожает фолликул и даже волосяной сосочек, питающий его. Таким образом, эпиляция лазером считается самой эффективной и безопасной процедурой удаления нежелательных волос.

Хотя лазерная эпиляция не вызывает острой боли, но для особо чувствительных пациентов применяются специальные крема и мази, предотвращающие неприятные ощущения, особенно в интимных зонах.

Безопасность лазеров[править | править код]

Даже маломощные лазеры (с выходной мощностью несколько милливатт) могут быть опасны для зрения.
Для видимых длин волн (400—700 нм), которые хорошо пропускаются и фокусируются хрусталиком, попадание лазерного луча в глаз, даже на несколько секунд, может привести к частичной или даже полной потере зрения. А лазеры большей мощности могут приводить даже к повреждению кожных покровов.

Лазеры делятся на 4 класса безопасности, от 1 — практически безопасный, до 4, у которого даже рассеянный луч может стать причиной ожога глаза или кожи.

Наклейка на CD-рекордере, предупреждающая об использовании в устройстве полупроводникового лазера Класс 1 Класс 1. Лазеры и лазерные системы малой мощности, которые не могут излучать уровень мощности, превышающий максимально разрешённое облучение. Лазеры и лазерные системы Класса 1 не способны причинить повреждение человеческому глазу.

Класс 2. Маломощные лазеры, способные причинить повреждение человеческому глазу в том случае, если смотреть непосредственно на лазер на протяжении длительного периода времени. Такие лазеры не следует использовать на уровне головы.

Класс 3a. Лазеры и лазерные системы, которые обычно не представляют опасность, если смотреть на лазер невооружённым взглядом только на протяжении кратковременного периода. Лазеры могут представлять опасность, если смотреть на них через оптические инструменты (бинокль, телескоп).

Класс 3b. Лазеры и лазерные системы, которые представляют опасность, если смотреть непосредственно на лазер. Это же относится и к зеркальному отражению лазерного луча.

Класс 4. Лазеры и лазерные системы большой мощности, которые способны причинить сильное повреждение человеческому глазу короткими импульсами (

ПРинцип работы лазера

Чтобы понять, как работает лазер, посмотрим на его структуру. Типичный лазер выглядит так: трубка, внутри которой размещен твердый кристалл, чаще всего рубин. С обоих торцов она закрыта зеркалами: прозрачным и не полностью прозрачным. Под воздействием электрической обмотки атомы кристалла генерируют световые волны. Эти волны перемещаются от одного зеркала к другому до того момента, пока не наберут интенсивность, достаточную для прохождения через не полностью прозрачное зеркало.

Как создается лазерный луч?

1-я стадия — выключенный лазер.

Электроны всех атомов (на картинке — черные точки на внутренних окружностях) занимают основной энергетический уровень.

2-я стадия — момент после включения.

Под действием энергии из разрядной трубки электроны перемещаются на более высокие энергетические орбиты (на картинке — внешние окружности).

3-я стадия — возникновение луча.

Электроны начинают покидать высокие энергетические орбиты и спускаться к основному уровню. При этом они начинают испускать свет и побуждают к этому остальные электроны. Образуется общий результирующий пучок света с одинаковой длиной волны у каждого источника. Чем больше новых электронов вернется к низким орбитам, тем мощнее свет лазера.

Резкость фокусировки

Длина световой волны в лазерном пучке только одна, следовательно, и цвет также один. Этот свет четко фокусируется линзой почти что полностью в одной точке.

(См. рисунок: слева — свет лазера, справа — естественный свет). Если сравнить свет лазера с естественным светом, то будет видно, что последний не способен иметь настолько резкий фокус. Благодаря концентрации в узком луче огромной энергии лазер способен передать этот луч на гигантские расстояния, избегая рассеяния и ослабления, присущих многоцветному свету — естественному. Эти качества лазера превращают его в незаменимый инструмент для человека.

Физическое обоснование

Разберем вышеописанный механизм работы лазера подробнее. Выясним, какие именно физические законы делают возможным его функционирование.

Активная среда

Для лазерного излучения необходима так называемая активная среда. Только в ней оно может происходить. Как же создается активная среда? Прежде всего, нужно специальное вещество, которое обычно состоит из кристаллов рубина или алюмоиттриевого граната. Собственно, это вещество и есть активная среда. Сформированный из него цилиндр или стержень вставляют в резонатор. Резонатор состоит из двух параллельных друг другу зеркал. Переднее зеркало наполовину прозрачно, а заднее не пропускает свет. Рядом с со стержнем (цилиндром) монтируется импульсная лампа. Цилиндр и импульсная лампа окружены зеркалом. Оно чаще всего изготовлено из кварца, на который нанесен слой металла. При помощи зеркала свет собирается на цилиндре.

Энергетические уровни атомов

Важный момент: состав активной среды таков, что у каждого ее атома есть как минимум три энергетических уровня. В спокойном состоянии атомы активной среды располагаются на низшем энергетическом уровне Е0. Как только включается лампа, атомы поглощают энергию ее света, поднимаются на уровень Е1 и довольно долго пребывают в таким возбужденном состоянии. Именно это и обеспечивает лазерный импульс.

Инверсная заселенность

Инверсная заселенность — фундаментальное физическое понятие. Это такое состояние среды, когда число частиц на каком-то верхнем энергетическом уровне атома (любом из существующих) больше, чем на нижнем. Собственно, активной и называется та среда, в которой уровни являются инверсно заселенными.

Фотоны и световой пучок

Электроны атома не располагаются хаотично. Они занимают определенные орбиты, окружающие ядро. Атом, получающий квант энергии, с огромной вероятностью переходит в состояние возбуждения, характеризующееся сменой орбиты электронами — с самой низкой (метастабильной или основной) на обладающую более высоким уровнем энергии. На такой орбите длительное нахождение электронов невозможно, поэтому происходит их самопроизвольное возвращение к основному уровню. В момент возвращения каждый электрон испускает волну света, называемую фотоном. Одним атомом запускается цепная реакция, и электроны многих других атомов также перемещаются на орбиты с более низкой энергией. Одинаковые световые волны движутся огромным потоком. Изменения этих волн согласованы во времени и в результате формируют общий мощный световой пучок. Этот пучок света и зовется лазерным лучом. Мощность луча у каких-то лазеров настолько огромна, что им можно разрезать камень или металл.

Выводы

Мы нисколько не преувеличиваем, когда говорим, что, появившись в середине XX века, лазеры сыграли в нашей жизни такую же значимую роль, как электричество и радио. Лазер проник практически во все области деятельности человека, и если вдруг изъять его, то мир перестанет быть таким привычным и комфортным. Даже текст этой статьи, читаемый вами сегодня с компьютера или смартфона, доступен благодаря полупроводниковым лазерам, активно используемым в новейших оптических средствах связи. Без лазеров невозможно представить компьютеры, а значит, и огромный пласт современной жизни человека. Будучи очень интересно устроенным, лазер открывает перед современной наукой новые перспективы развития. Свойства его невероятно многогранны, и можно смело сказать, что лазерный луч высвечивает себе путь абсолютно во всех сферах человеческой жизни, делая ее качественнее и счастливее!

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector