Красный карлик

Гелий – 3

Коричневый карлик вполне может быть классифицирован как просто странная разновидность очень больших планет. В конце концов, планеты тоже постоянно охлаждаются, поскольку стареют. И у них нет новых источников энергии, которые будут подогревать их в течение миллиардов или триллионов лет.

Но большинство коричневых карликов играют в особую игру. Требуется определенный порог по массе (примерно в 80 раз больше, чем у Юпитера), чтобы достичь огромных температур и давлений в ядре объекта, которые необходимы для слияния водорода в гелий. Именно это необходимо для того, чтобы космический объект мог считать себя звездой. Но есть гораздо более низкий порог, примерно в 13 раз больший массы Юпитера, при котором может происходить другой вид синтеза.

В этой гораздо более прохладной обстановке дейтерий (который представляет собой один протон и один нейтрон, склеенные вместе в ядре) может ударить свободный протон. Эта реакция превратит дейтерий в гелий-3, и высвободит немного энергии. Обычные звезды проходят краткую фазу горения дейтерия, после которой они достаточно нагреваются. Но коричневые карлики могут поддерживать этот процесс достаточно длительное время. Но так никогда и не переключаются на полномасштабный термоядерный синтез.

Фольклор[править | править код]

…сталкер продвигается по тёмным коридорам, продирается сквозь джунгли навалов разнообразного индустриального мусора — балки, ржавые конструкции, бетонные блоки и т. д. В руках АК-74, на поясе детектор жизненных форм. Детектор подаёт свой тихий сигнал — крупная живая масса на расстоянии 10 метров. Сталкер отключает звук детектора и замирает в тёмном углу, в трёх метрах от него проход, через который, предположительно, пойдёт карлик. Детектор сигнализирует о приближении живой массы – восемь метров, семь, шесть, пять… пять… пять… Карлик что-то почувствовал! Сталкер держит проход на прицеле, ему кажется, что темнота немного сгустилась. Карлик стоит в пяти метрах дальше по проходу и, кажется, тоже ждёт. Тут сталкер чуть не открывает огонь, в проход медленно и беззвучно влетает кирпич, он немного вращается. Кирпич зависает в двух метрах напротив сталкера. Тишина ничем не нарушается. Кирпич, качнувшись немного, разворачивается в воздухе. Он немного поднимается и с размахом несётся к сталкеру. Получивший ощутимый удар кирпичом, сталкер не выдерживает и бросается в проход атаковать карлика, но его встречает лавина летящих кирпичей…

Что у них внутри

Что же происходит в недрах протозвезды, если гравитационный коллапс не завершился термоядерным поджогом водорода, а электроны объединились вединую квантовую систему, так называемый вырожденный ферми-газ? Доля электронов в этом состоянии увеличивается постепенно, а не подскакивает за единый миг от нуля до 100%. Однако для простоты будем считать, что этот процесс уже завершен.

Принцип Паули утверждает, что два электрона, входящие в одну и ту же систему, не могут пребывать в одинаковом квантовом состоянии. В ферми-газе состояние электрона определяется его импульсом, положением и спином, который принимает всего два значения. Это означает, что в одном и том же месте может находиться не более пары электронов с одинаковыми импульсами (и, естественно, противоположными спинами). А поскольку в ходе гравитационного коллапса электроны пакуются во все уменьшающийся объем, они занимают состояния с возрастающими импульсами и, соответственно, энергиями. Значит, по мере сжатия протозвезды растет внутренняя энергия электронного газа. Эта энергия определяется чисто квантовыми эффектами и не связана с тепловым движением, поэтому в первом приближении не зависит от температуры (в отличие от энергии классического идеального газа, законы которого изучают в школьном курсе физики). Более того, при достаточно высокой степени сжатия энергия ферми-газа многократно превосходит тепловую энергию хаотического движения электронов и атомных ядер.

Увеличение энергии электронного газа повышает и его давление, которое также не зависит от температуры и растет куда сильнее давления теплового. Именно оно противостоит тяготению вещества протозвезды и прекращает ее гравитационный коллапс. Если это произошло до достижения температуры поджога водорода, коричневый карлик остывает сразу же после непродолжительного по космическим масштабам выгорания дейтерия. Если прото-звезда пребывает в пограничной зоне и имеет массу 0,07−0,075 солнечной, она еще миллиарды лет сжигает водород, но на ее финал это не влияет. В конце концов квантовое давление вырожденного электронного газа столь снижает температуру звездного ядра, что горение водорода останавливается. И хотя его запасов хватило бы на десятки миллиардов лет, поджечь их коричневый карлик уже больше не сможет. Этим-то он и отличается от самого легкого красного карлика, выключающего ядерную топку, лишь когда весь водород превратился в гелий.


Все известные звезды на диаграмме Герцшпрунга-Рассела распределены не равномерно, а объединяются в несколько спектральных классов с учетом светимости (Йеркская классификация, или МКК, по фамилиям разработавших ее астрономов из Йеркской обсерватории — Уильяма Моргана, Филиппа Кинана и Эдит Келлман). Современная классификация выделяет на диаграмме Герцшпрунга-Рассела восемь таких основных групп. Класс 0 — это гипергиганты, массивные и очень яркие звезды, превышающие Солнце по массе в 100−200 раз, а по светимости — в миллионы и десятки миллионов. Класс Ia и Ib — это сверхгиганты, в десятки раз массивнее Солнца и в десятки тысяч раз превосходящие его по светимости. Класс II — яркие гиганты, занимающие промежуточное положение между сверхгигантами и гигантами, которые относятся к классу III. Класс V — это т.н. главная последовательность (карлики), на которой лежит большинство звезд, в том числе и наше Солнце. Когда звезда главной последовательности исчерпает свой запас водорода и в ее ядре начнется горение гелия, она станет субгигантом, которые относятся к классу IV. Чуть ниже главной последовательности лежит класс VI — субкарлики. А к классу VII относятся компактные белые карлики, конечная стадия эволюции звезд, не превышающих по массе предел Чандрасекара.

Профессор Барроуз отмечает и еще одно различие звезды и коричневого карлика. Обычная звезда не только не остывает, теряя лучистую энергию, но, как это ни парадоксально, нагревается. Это происходит потому, что звезда сжимает и разогревает свое ядро, а это сильно увеличивает темпы термоядерного горения (так, за время существования нашего Солнца его светимость возросла по крайней мере на четверть). Иное дело коричневый карлик, сжатию которого препятствует квантовое давление электронного газа. Вследствие излучения с поверхности он остывает, подобно камню или куску металла, хотя и состоит из горячей плазмы, как нормальная звезда.

Общие характеристики

Спектр звезды класса M6V

Красные карлики довольно сильно отличаются от других звёзд. Масса красных карликов не превышает трети солнечной массы (нижний предел массы — 0,0767M, затем идут коричневые карлики). Температура фотосферы красного карлика может достигать 3500 К, что превышает температуру спирали лампы накаливания, поэтому, вопреки своему названию, красные карлики, аналогично лампам, испускают свет не красного, а скорее охристо-желтоватого оттенка. Звезды этого типа испускают очень мало света, иногда в 10 000 раз меньше чем Солнце. Из-за низкой скорости термоядерного сгорания водорода красные карлики имеют очень большую продолжительность жизни — от десятков миллиардов до десятков триллионов лет (красный карлик с массой в 0,1 массы Солнца будет гореть 10 триллионов лет). В недрах красных карликов невозможны термоядерные реакции с участием гелия, поэтому они не могут превратиться в красные гиганты. Со временем они постепенно сжимаются и всё больше нагреваются, пока не израсходуют весь запас водородного топлива, и постепенно превращаются в голубые карлики, а затем — в белые карлики с гелиевым ядром. Но с момента Большого взрыва прошло ещё недостаточно времени, чтобы красные карлики смогли сойти с главной последовательности.

Тот факт, что красные карлики остаются на главной последовательности, в то время как другие звезды сходят с неё, позволяет определять возраст звёздных скоплений путём нахождения массы, при которой звёзды вынуждены сойти с главной последовательности. Кроме того, тот факт, что на данный момент не найдено ни одного красного карлика вне главной последовательности, свидетельствует о том, что Вселенная имеет конечный возраст.

Характеристики красных карликов
Спектральный класс Радиус Масса Светимость Температура Типичные представители
R/R M/M L/L K
M0 0,64 0,47 0,075 3850 GJ 278C
M1 0,49 0,49 0,035 3600 GJ 229A
M2 0,44 0,44 0,023 3400 Лаланд 21185
M3 0,39 0,36 0,015 3250 GJ 725A
M4 0,26 0,20 0,0055 3100 Звезда Барнарда
M5 0,20 0,14 0,0022 2800 GJ 866AB
M6 0,15 0,10 0,0009 2600 Вольф 359
M7 0,12 0,09 0,0006 2500 Ван Бисбрук 8
M8 0,11 0,08 0,0003 2400 Ван Бисбрук 9
M9 0,08 0,079 0,00015 2300 LHS 2924
M9.5 0,08 0,075 0,0001 2250 DENIS-P J0021.0–4244

Общие сведения[править | править код]

Уродливый карлик, обитает в подземельях, не любит появляться на свету. У карликов очень мощные руки, которыми они могут разрывать свои жертвы, развитый интеллект и быстрая реакция. Характер у карликов чрезвычайно мерзкий, нервическая злоба заставляет их совершать дикие и неожиданные поступки. Их характер вместе с интеллектом делает их одними из самых опасных противников в Зоне. У них сильно развиты предчувствие и телекинетические способности.Присутствует коллективный разум. Иммуны к радиации, поддаются пси-излучению. При испуге разбегаются с визгом, похожим на детский.Во время бега достаточно быстро перемещают свои маленькие ноги. Подойдя на 5-10 метров к месту с укрытиями останавливается и старается почувствовать противника на расстоянии. При его отсутствии продолжает движение.Во время атаки бьют своими сильными руками и дубинками, наносят телекинетические удары. Во время побега старается прятаться за укрытиями.

Происхождениеправить | править код

Точное происхождение карликов неизвестно. Скорее всего, они были созданы в лабораторных условиях и являются результатами каких-то экспериментов. Возможно, в качестве подопытных использовались дети.

Возможно, имеют отношение к программе «Универсальный солдат».

Распространениеправить | править код

По подземным переходам и туннелям карлики уходят всё дальше и дальше от центра Зоны. Они отходят от разрастающегося смертельного круга в центре Зоны, который поглощает землю, уничтожая всё живое.

Бурые карлики в окрестностях Солнечной системы

Не так давно астрономами недалеко от Солнечной системы была обнаружена группа сверххолодных звезд – коричневых карликов. Исследования возглавлял астроном из Монреаля Дж. Роберт. Эти открытия помогут ученым в дальнейшем определить, насколько плотно эти объекты располагаются недалеко от нашей звездной системы, а также в других близлежащих областях. Команда астронома Дж. Роберта открыла 165 коричневых карликов. Треть из этих сверххолодных звезд (этот термин означает, что температура их поверхности не превышает 2200 Кельвинов) имеет достаточно необычный химический состав. Ученые считают, что открытие большей части звезд такого типа предстоит лишь в будущем, ведь предыдущие ученые «проглядели» большое количество объектов.

Типичные красные карлики

  • Проксима Центавра — (M5.5 Ve) — расстояние 1,31 пк; светимость — 0,000 072 солнечной;
  • Звезда Барнарда — (M5V) — расстояние 1,83 пк; светимость — 0,000 450 солнечной;
  • Вольф 359 — (dM6e) — расстояние 2,34 пк; светимость — 0,000 016 солнечной;
  • Росс 154 — (dM4e) — расстояние 2,93 пк; светимость — 0,000 380 солнечной;
  • Росс 248 — (dM6e) — расстояние 3,16 пк; светимость — 0,000 110 солнечной;
  • Росс 128 — (dM5) — расстояние 3,34 пк; светимость — 0,000 080 солнечной;
  • Глизе 581 — (M3V) — расстояние 6,27 пк; светимость — 0,013 солнечной;
  • TRAPPIST-1 — (M8V) — расстояние 12,10 пк; светимость — 0,000 525 солнечной.

Определение размеров

Коричневые карлики рождаются как звезды, некоторое время излучают тепло, а иногда даже синтезируют элементы в своих недрах. Итак, есть ли причина назвать их звездами?

Коричневый карлик – объект маленький. Очень маленький для звезды. Конечно, эти объекты больше Юпитера. Но к настоящему дню в космосе обнаружено уже много объектов, которые больше Юпитера. Красный карлик не намного крупнее обычной газовой планеты – гиганта.

Звездам присуще одна особенность – это реакция термоядерного синтеза, происходящие в их ядрах. Высвобождаемые энергии постоянно конкурируют с внутренней гравитацией, пытаясь расширить внешние слои звезды.

Но, как мы знаем, коричневые карлики не имеют таких свойств. И в отличие от планет, у них нет скалистых ядер или ледяных мантий. Все, что у них осталось, – это экзотическая квантовая сила, известная как давление вырождения.  Она определяет, сколько частиц может поместиться в определенном объеме. Коричневые карлики полностью поддерживаются давлением вырождения, поэтому они имеют минимально возможный размер для своей массы.

Граница между большими планетами и маленькими звездами не просто размыта. Существует совершенно отдельный класс объектов. Они обладают одновременно свойствами как планет, так и звезд. Но при этом не являются ни тем, ни другим.

Можно сказать, что коричневые карлики – это подростки небесного царства.

Рассказать всей Вселенной!

История

Коричневые карлики были первоначально названы чёрными карликами и классифицировались как тёмные субзвёздные объекты, свободно плавающие в космическом пространстве и имеющие слишком малую массу, чтобы поддерживать стабильную термоядерную реакцию. В настоящее время термин «чёрный карлик» имеет совсем другое значение.

В ранних моделях строения звёзд считалось, что для протекания термоядерных реакций масса звезды должна быть хотя бы в 80 раз больше массы Юпитера (или 0,08 массы Солнца). Гипотеза о существовании плотных звездоподобных объектов с массой меньше указанной (коричневые карлики) была выдвинута в начале 1960-х годов. Считалось, что образование их протекает во многом подобно образованию обычных звёзд, но обнаружить их очень сложно, так как они практически не испускают видимого света. Наиболее сильное излучение коричневых карликов наблюдается в инфракрасном диапазоне.

Но на протяжении нескольких десятилетий наземные телескопы, работающие в этом диапазоне, имели слишком низкую чувствительность и поэтому были неспособны обнаружить коричневых карликов. Позднее было выдвинуто предположение, что в зависимости от компонентов, участвующих в формировании звезды, критическая масса, необходимая для протекания такого же, как и в обычной звезде, термоядерного синтеза гелия с участием водорода, составляет 75 масс Юпитера. Субзвёздные объекты, достаточно быстро сформировавшиеся сжатием туманности, могут иметь массу меньше 13 масс Юпитера. В них вообще исключено протекание каких-либо термоядерных реакций.

С 1995 года, когда было впервые подтверждено существование коричневого карлика, было найдено более сотни подобных объектов. Считается, что они составляют большинство космических объектов в Млечном Пути. Самые близкие из них к Земле — два карлика в системе Луман 16, находящиеся на расстоянии 6,5 световых лет от Солнца в созвездии Паруса, одиночный карлик WISE 1506+7027 в созвездии Малая Медведица (11,1 св. лет), обращающиеся друг вокруг друга компоненты B и C в тройной системе ε Индейца (12 св. лет), коричневый карлик в двойной системе SCR 1845-6357 в созвездии Павлина (12,6 св. лет) и UGPS 0722-05 в созвездии Единорога (13,4 св. лет).

В 2006 году при наблюдении за зоной интенсивного звёздообразования в Туманности Ориона впервые удалось непосредственно измерить массы двух коричневых карликов в затменно-переменной двойной системе Гевелий 240, которые оказались равны 5,5 % и 3,5 % от массы Солнца.

Как они зажигаются

Со временем эти оценки не особенно изменились. Сейчас считают, что временное возгорание водорода у протозвезды, родившейся из относительно молодых молекулярных облаков, происходит в диапазоне 0,07−0,075 солнечной массы и длится от 1 до 10 млрд лет (для сравнения, красные карлики, самые легкие из настоящих звезд, способны светить десятки миллиардов лет!). Как отметил в беседе с «ПМ» профессор астрофизики Принстонского университета Адам Барроуз, термоядерный синтез компенсирует не более половины потери лучистой энергии с поверхности коричневого карлика, в то время как у настоящих звезд главной последовательности степень компенсации составляет 100%. Поэтому несостоявшаяся звезда охлаждается даже при работающей «водородной топке» и тем более продолжает остывать после ее заглушки.

Протозвезда с массой менее 0,07 солнечной поджечь водород вообще не способна. Правда, в ее недрах может вспыхнуть дейтерий, поскольку его ядра сливаются с протонами уже при температурах в 600−700 тысяч градусов, порождая гелий-3 и гамма-кванты. Но дейтерия в космосе немного (на 200 000 атомов водорода приходится всего один атом дейтерия), и его запасов хватает всего на несколько миллионов лет. Ядра газовых сгустков, не достигших 0,012 массы Солнца (что составляет 13 масс Юпитера) не разогреваются даже до этого порога и поэтому не способны ни к каким термоядерным реакциям. Как подчеркнул профессор Калифорнийского университета в Сан-Диего Адам Бургассер, многие астрономы полагают, что именно здесь и проходит граница между коричневым карликом и планетой. По мнению представителей другого лагеря, коричневым карликом можно считать и газовый сгусток полегче, если он возник в результате коллапса первичного облака космического газа, а не родился из газо-пылевого диска, окружающего только что вспыхнувшую нормальную звезду. Впрочем, любые подобные определения — дело вкуса.

Еще одно уточнение связано с литием-7, который, как и дейтерий, образовался в первые минуты после Большого взрыва. Литий вступает в термоядерный синтез при несколько меньшем нагреве, нежели водород, и потому загорается, если масса протозвезды превышает 0,055−0,065 солнечной. Однако лития в космосе в 2500 раз меньше, чем дейтерия, и поэтому с энергетической точки зрения его вклад совершенно ничтожен.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector