Спутники планеты земля: какие есть и чем отличаются

США могли быть первыми

Ракеты выглядят особенно красиво на фоне темного неба.

Вернер фон Браун был человеком, которым двигало желание строить ракеты, и он хотел использовать эти ракеты для изучения космического пространства. Остаются серьезные вопросы касательно степени, в которой он был готов игнорировать моральные дилеммы, вызванные плановым использованием того, что он разработал, но, несомненно, он был гениальным инженером, когда дело доходило до разработки новых технологий.

Фон Браун потратил большую часть времени во Второй мировой войне на разработку ракет V-2, которые нанесли серьезный урон Лондону во время войны. Затем он принял сознательное решение возглавить свою команду инженеров уже на стороне американских сил и предложил свои услуги правительству США.

К 1953 году фон Браун стал главой американской команды, разрабатывающей ракеты. Он усовершенствовал и увеличил конструкцию V-2, превратив ее в первую баллистическую ракету американцев, PGM-11 Redstone, которая взлетела в том же году. Redstone была разработана для использования на боле боя и имела рабочую дальность всего в 320 километров, но фон Браун хотел запускать с ее помощью и спутники.

В сентябре 1954 года он предложил сделать «минимальный спутниковый аппарат». Это была, по сути, Redstone в сочетании с тремя верхними ступенями небольших твердотельных ракет. Эта комбинация, как подсчитал фон Браун, могла вывести небольшой спутник весом 2,5 килограмма на орбиту Земли. Он также запросил 100 000 долларов дополнительного финансирования на разработку своего спутника, но получил строгий отказ. Возможность номер один была упущена.

Период с июля 1957 года по декабрь 1958 году был обозначен Международным геофизическим годом (МГГ), с целью содействия научному сотрудничеству между странами. В 1955 году Советский Союз объявил, что в рамках МГГ он запустит научные инструменты в космос. В духе соперничества, а не сотрудничества, президент США Дуайт Эйзенхауэр сразу же заявил, что США планируют вывести искусственный спутник на орбиту Земли в рамках МГГ.

В то время армия США, ВВС и ВМС — все разрабатывали собственные проекты ракет. И каждый предложил свои силы для запуска спутника. К досаде Вернера фон Брауна, ВМС выиграли «тендер» с ракетой Vanguard. В качестве утешения армии позволили построить модифицированный Redstone, который затем назвали Jupiter-C. Это было сделано для того, чтобы проверить конструкции теплозащитных экранов для возвращения ядерных боеголовок в атмосферу на подходе к цели.

Министр обороны США Чарли Уилсон не был поклонником фон Брауна и был обеспокоен тем, что тот может запустить спутник «случайно». Поэтому он приказал главе военной ракетной программы генералу Брюсу Медарису лично осмотреть ценный груз каждого Jupiter-C перед запуском, чтобы гарантировать, что фон Браун не поместит «живой» спутник на ракетах.

Первый запуск Jupiter-C состоялся 20 сентября 1956 года. Ракета несла ценный груз весом 39 килограммов на высоту 1094 километра на скорости 25 750 километров в час. Добавление одной небольшой ступени и облегчение багажа позволило бы ускорить ее до 28 485 километров в час и вывести на орбиту спутник. Космическая эпоха могла начаться за год до полета «Спутника-1». Возможность номер два была упущена.

И так получилось, что русские запустили «Спутник», поместив проект Vanguard под серьезное давление. В декабре 1957 года низкопрофильный испытательный запуск стал всемирным новостным событием. Ракета Vanguard приподнялась на несколько метров от стартовой площадки, а затем с треском взорвалась.

Правительство США в отчаянии обратилось к команде фон Брауна. Она поспешно собрала новую версию Jupiter-C, включив дополнительную ступень с небольшим ценным научным грузом. Название ракеты изменили на Juno и убедили мир, что это не совсем и ракета. И тогда, 31 января 1958 года, на орбиту был выведен Explorer 1, а США наконец вступили в космическую гонку — при помощи плана Вернера фон Брауна, которому было отказано в 1954 и 1955 годах.

Типы спутников

Полярно-орбитальные спутники также проходят через полюсы с каждым оборотом, хотя их орбиты менее эллиптические. Полярные орбиты остаются фиксированными в космосе, в то время как вращается Земля. В результате, большая часть Земли проходит под спутником на полярной орбите. Поскольку полярные орбиты дают прекрасный охват планеты, они используются для картографирования и фотографии. Синоптики также полагаются на глобальную сеть полярных спутников, которые облетают наш шар за 12 часов.

Можно также классифицировать спутники по их высоте над земной поверхностью. Исходя из этой схемы, есть три категории:

  • Низкая околоземная орбита (НОО) — НОО-спутники занимают область пространства от 180 до 2000 километров над Землей. Спутники, которые движутся близко к поверхности Земли, идеально подходят для проведения наблюдений, в военных целях и для сбора информации о погоде.
  • Средняя околоземная орбита (СОО) — эти спутники летают от 2000 до 36 000 км над Землей. На этой высоте хорошо работают навигационные спутники GPS. Примерная орбитальная скорость — 13 900 км/ч.
  • Геостационарная (геосинхронная) орбита — геостационарные спутники двигаются вокруг Земли на высоте, превышающей 36 000 км и на той же скорости вращения, что и планета. Поэтому спутники на этой орбите всегда позиционируются к одному и тому же месту на Земле. Многие геостационарные спутники летают по экватору, что породило множество «пробок» в этом регионе космоса. Несколько сотен телевизионных, коммуникационных и погодных спутников используют геостационарную орбиту.

И наконец, можно подумать о спутниках в том смысле, где они «ищут». Большинство объектов, отправленных в космос за последние несколько десятилетий, смотрят на Землю. У этих спутников есть камеры и оборудование, которое способно видеть наш мир в разных длинах волн света, что позволяет насладиться захватывающим зрелищем в ультрафиолетовых и инфракрасных тонах нашей планеты. Меньше спутников обращают свой взгляд к пространству, где наблюдают за звездами, планетами и галактиками, а также сканируют объекты вроде астероидов и комет, которые могут столкнуться с Землей.

Звуки спутника

Рисунок ПС-1 над планетой

Чтобы любой желающий мог убедиться в работе спутника, конструкторы настроили его на непрерывную отправку сигналов. За эту процедуру отвечало электромеханическое реле, отправляющее поочередные сигналы на частотах 20 и 40 МГц длительностью в 0,3-0,4 секунды. Перерывы между ними равнялись такому же значению.

Длина сигнала напрямую зависела от датчиков давления и температуры, замеряющих эти параметры внутри конструкции. Благодаря неизменности периодов передачи ученые могли убедиться, что ПС-1 работает исправно, внутри сохраняется герметичность. В течение двух с половиной недель устройство отправило несколько миллионов сигналов, представляющих собой простое “бип”.

Не просто так для работы были выбраны частоты 20 и 40 МГц. На них способны настраиваться большинство приемников того времени. Благодаря этому любой желающий мог поймать сигнал спутника.

Практически сразу после выхода на орбиту начала расти частота коммутации. Уже через несколько дней она была на 40% выше ожидаемой. Ученые до сих пор не могут установить точную причину роста.

Спутниковое телевидение

Уже давно использование спутниковых систем привело к телевидению, которое работает также на определенных технологиях. С середины прошлого века все активнее используется космическое пространство, при этом сейчас оно не только служит для передачи информации на определение местонахождения некоторых объектов, но и позволяет смотреть телевизор. Как это происходит?

Для этого необходимо установить специальную мощную антенну, которая будет принимать сигнал от спутника. Благодаря ей можно ловить сигналы практически со всего мира. При этом те территории, которые способны ловить подобные волны, считаются зоной покрытия. Антенна, которая принимает сигналы, имеет вид тарелки. Так она является многим уже знакомой, так как сейчас является популярной. Благодаря таким поверхностям радиоволны отражаются, фокусируется в месте, где имеется конвектор. Он принимает сигнал, однако потом его конвертирует и отправляет на ресивер. Последний является приемником, который преобразует все полученные сигналы в радиоволны, и соответственно человек может смотреть телевизор.

Следует отметить, что применение спутниковых систем позволяет получать высококачественную картинку, а также звук. Такое свойство передачи сигнала называется цифровым. Более того, спутниковое телевидение позволяет смотреть человеку передачи со всего мира. Особенно такое будет полезно людям, которые работают на специфических работах, а также занимаются изучением языков. Это также позволяет найти огромное количество тематических телеканалов, что дает возможность смотреть мультики либо же круглосуточно искать какие-либо передачи о природе или музыке.

Благодаря спутниковому телевидению у себя дома можно расширить кругозор, также получить большое количество положительных эмоций от просмотра передач. Также это позволяет сэкономить деньги. Ведь человеку необходимо лишь заплатить за приобретение тарелки и ее настройку, далее не стоит платить за кабельного оператора. Потому что спутниковое оборудование работает только благодаря приему сигнала со спутника, а это бесплатно. Надо отметить, что подобное чаще всего выручают жителей в больших районах или, наоборот, в маленьких населенных пунктах. Во втором случае нередко аналоговая связь оставляет желать лучшего, а картинка довольно плохая. Именно поэтому многие заинтересованы в установке тарелок. Нужно заметить, что иногда также бывают проблемы с приемом сигнала, поэтому использование такой спутниковой системы действительно выручает и позволяет просматривать телевизор в любой момент.

Спутниковые службы

В зависимости от назначения систем спутниковой связи и типа земной станции различают следующие службы:

  • Фиксированная спутниковая служба для связи между станциями, расположенными в определенных фиксированных пунктах и для распределения телевизионных программ. 
  • Подвижная спутниковая служба для связи между подвижными станциями,размещенными на транспортных средствах или у абонентов. 
  • Радиовещательная спутниковая служба для передачи радио и телевизионных программ непосредственно на терминалы абонентов. 

Фиксированные спутниковые службы

Начиналось всё с фиксированных спутниковых служб. Это связь с использованием космического ретранслятора между наземными станциями. И основное назначение это обеспечение связи в первую очередь для государственных нужд. 

Фиксированные спутниковые службы начали использоваться государством для центральных телевизионных программ на удаленную территорию советского союза. Первоначально ФСС развивалась в направлении создания систем магистральной связи с применением наземных станций с диаметром антенн порядка 12…30 метров. 

Фиксированная антенна с приемной станцией “Орбита”, диаметр антенны 12 метров. Система “Орбита” использовала спутники на высокоэллиптической орбите, это были первоначально спутники серии “Молния”. На эллипсе надо иметь 3 аппарата, как правило 4, чтобы обеспечить постоянную связь. 

В настоящее время для фиксированных служб функционирует около 50 систем ФСС. Например, “Молния 3”. 

На высокоэллиптической орбите используются аппараты, которые называются “Меридиан”. Спутники “Радуга” и “Горизонт” это геостационарные аппараты, которые обеспечивают фиксированную спутниковую связь. Intelsat это международная система. 

Подвижные спутниковые службы

Особенностью большинства систем ПСС является маленький размер антенны терминала, что затрудняет прием сигнала. Востребованы на морском транспорте. Для того, чтобы мощность сигнала достигающего приемника была достаточной, применяют одно из двух решений: 

  1. Спутники располагаются на геостационарной орбите поскольку эта орбита удалена от Земли на расстояние 35 786 км, на спутник требуется установить мощный передатчик. Этот подход используется системой Inmarsat. Подвижная спутниковая связь начала свое существование с международного договора по созданию системы Inmarsat, которая была первоначально ориентирована на обеспечение связи с морскими судами. 
  2. Множество спутников располагается на наклонных или полярных НВО. Inmarsat и прочие системы основанные на спутниках, как правило предназначены для оказания коллективных услуг. А когда создается система на низковысотных спутниках, то можно за счет более низкой стоимость аппарата и низкой стоимости запуска, построить глобальную сеть, которая позволит Вам связываться из любой точки земного шара, через спутниковую сеть. Первой такой системой, была система Iridium. 

Кластерный запуск

Кластерный (англ. cluster — «группа», «скопление», «связка») — это групповой запуск космических аппаратов, когда на околоземную орбиту одновременно выводится несколько спутников (от двух и более). Попутно с основной полезной нагрузкой (спутником, космическим кораблем) или самостоятельно могут запускаться группы из малых космических аппаратов: микроспутники весом 10-100 кг, наноспутники — 1-10 кг, пикоспутники или сверхмалые аппараты типа CubeSat — от 100 г до 1 кг, фемтоспутники — до 100 г. Запуск сверхмалых аппаратов осуществляется в пусковых контейнерах, так как на их корпусе нет возможности установить элементы систем отделения (аппараты высвобождаются из контейнера пружинным толкателем).

Для кластерных запусков в основном используются ракеты-носители легкого класса. Например, индийская PSLV (эксплуатируется с 1993 года), российско-украинская «Днепр» (с 1999 года), европейская Vega (с 2012 года) и др.

Кроме того, развиваются программы с использованием для групповых запусков космических носителей средней грузоподъемности («Союз-2.1а»; Россия), а также тяжелых ракет (Falcon 9; США).

Шаг второй: выбираем платформу

Итак, размер выбрали. Теперь определим, какие задачи сможет решить наш спутник.

Фемтоспутник

Фемтоспутники могут выполнять и простые научные задачи: измерять магнитное поле, окружающую температуру, ускорение и передавать эти данные на Землю. Так можно получить интересные данные о верхних слоях атмосферы и получить представление об условиях жизни на МКС.

Для фемтоспутника не нужны сложные и редкие компоненты, подойдут чипы, которые используются в бытовой электронике: смартфонах или планшетах.

KickSat Sprite — открытый проект: всё необходимое для сборки своего спутника — чертежи, модели и программный код — можно бесплатно скачать с GitHub. Хотите готовое устройство, тогда следите за страницей проекта на KickStarter.

Пикоспутники

гораздо технологичнее. На борту могут быть уникальные измерительные приборы, механические устройства и даже собственные двигатели.

Собирать такой спутник «с нуля» — задача крайне трудоёмкая: придётся углубится в дебри сопромата и термеха, повозится с натурными испытаниями и пробиться через семь кругов согласований с будущим «космическим извозчиком».

Имейте ввиду, компании, которая доставит такой спутник на орбиту, понадобится как минимум два одинаковых устройства. Первое будут испытывать на Земле: оно пройдёт через барокамеру, вибростенд, подвергнется шоковой заморозке и побывает в печи. Только после успешных испытаний дублёра, перевозчик пустит на борт ваш спутник.

Разработка существенно ускорится и упростится, если вы решите строить свой спутник на базе существующих платформ: CubeSat или TubeSat.

CubeSat

Первый стандарт любительской космонавтики, он появился ещё в 1999 году. Сейчас это самая популярная платформа для создания студенческих спутников.Залогом успеха стали чёткие спецификации и упрощением процедуры запуска.

Спутники стандарта CubeSat собираются в контейнеры и уже в них крепятся на ракетоноситель. Если спутник соответствует требованиям платформы, программа испытаний существенно сокращается.

Кроме того, предусмотрен альтернативный вариант запуска. Аппараты попадают на Международную Космическую Станцию на борту грузовых кораблей. А потом космонавты в прямом смысле выкидывают их за борт во время плановых выходов в космос.

Для CubeSat выпущено множество сертифицированных компонентов: несущие рамы и силовые конструкции, бортовые компьютеры и электронные модули, сборки аккумуляторов и солнечные панели. Вы можете собрать спутник из деталей разных производителей, это существенно удешевит сборку спутника. А ещё можете купить набор для сборки: конструктор с уже включённой доставкой спутника на орбиту обойдётся в 20 тысяч долларов.

TubeSat

создавался как дешёвая альтернатива CubeSat.

Спутник строится на базе круглых печатных плат. Платы с электроникой соединяются между собой металлическими втулками.

Внешний корпус собирается из прямоугольных плат с солнечными панелями и внешними сенсорами. Получается простая и лёгкая конструкция.

Набор для сборки такого спутника намного бюджетнее: компоненты и запуск обойдутся примерно в 12 тысяч долларов. Спутник получится вдвое легче аналогичного CubeSat, а стоимость запуска напрямую зависит именно от веса.

Стандарт TubeSat развивает некоммерческая компания Interorbital Systems, которая занимается выведением таких спутников на околоземную орбиту.

Запуск. «Технический Перл-Харбор»

— Наталия Михайловна, 24 сентября Тихонравов принес на подпись Сергею Павловичу технический отчет о возможности запуска ПС-1. Говорят, Королев написал резолюцию: «Хранить вечно!» Где этот отчет сейчас?

— Может быть, в федеральных архивах. Но, думаю, скорее всего, в «Энергии». Это же там было ОКБ-1.

Когда ТАСС сообщил о запуске, все постоянно смотрели в небо. Над Москвой спутник впервые пролетел в 01 час 46 минут 5 октября 1957 года. Люди кричали: «Вот спутник, спутник летит!». Никто ж не знал, что отражающая поверхность спутника была слишком мала, чтобы ее визуально наблюдать. На самом деле видели вторую ступень — центральный блок ракеты, который вышел на ту же орбиту, что и спутник.

— А Михаил Клавдиевич, когда прилетел с полигона, что-нибудь рассказывал?

55 лет назад собаки Белка и Стрелка побывали в космосе и вернулись живыми

— Ничего! Все было засекречено. Мама догадывалась, конечно, но никаких вопросов никогда не задавала. Потом, когда отца в числе других наградили, я тоже поняла.

…Запуск спутника и достижение первой космической скорости вызвали мировую сенсацию. Ракета Р-7 и первый искусственный спутник Земли стали квинтэссенцией достижений отечественной советской науки и техники. Один из американских журналов писал: «Мы не ждали советского спутника, и поэтому он произвел на Америку впечатление нового технического Перл-Харбора».

Месяц спустя, 3 ноября 1957 года, Советский Союз запустил второй спутник — весом 508,3 кг с собакой Лайкой на борту. И только в феврале 1958 года свой первый спутник запустили американцы.

ПАРАМЕТРЫ

Начало полета — 4 октября 1957 года в 22:28:34 мск

Окончание полета — 4 января 1958 года.

Масса ракеты после заправки — 267 т

Масса аппарата — 83,6 кг (0,03% от массы ракеты).

Максимальный диаметр — 0,58 м

Витков вокруг Земли — 1440 (около 60 млн км).

На каждый виток — 96 минут 10,2 сек

УСТРОЙСТВО

Корпус спутника состоял из двух полусфер диаметром 58 см из алюминиевого сплава AMr-6 толщиной 2 мм со стыковочными шпангоутами, соединенными 36 болтами. Поверхность специально полировалась, чтобы лучше отражать солнечный свет и препятствовать перегреву спутника. Не допускалась даже малейшая царапина. Внутри спутник заполнялся азотом, поддерживалась температура 20-30 С. Четыре антенны (две — по 2,4 м, две — по 2,9 м) были смонтированы на верхней полуоболочке. Специальный пружинный механизм разводил их на орбите на угол 35 градусов от продольной оси спутника.

НАУЧНЫЕ РЕЗУЛЬТАТЫ

Научной аппаратуры на спутнике не было. Тем не менее ученые получили важные данные. Были проверены расчеты и основные технические решения. Проведены исследования прохождения через ионосферу радиоволн, излучаемых передатчиками спутника, экспериментальное определение плотности верхних слоев атмосферы по торможению спутника, исследование условий работы аппаратуры.

ПОД ГРИФОМ «СЕКРЕТНО»

При старте ракеты один из двигателей «запаздывал». Блок вышел на режим менее, чем за секунду до контрольного времени. Иначе старт был бы автоматически отменен.

А на 16-й секунде полета случилась другая напасть — отказала система управления подачи топлива. Это привело к повышенному расходу керосина. В результате центральный двигатель отключился на 1 секунду раньше расчетного времени. Ракета и спутник были выведены на орбиту с апогеем примерно на 80-90 км ниже расчетного.

ВОПРОСЫ ПО СУЩЕСТВУ

Почему шар?

Поначалу первый спутник должен был иметь коническую форму со сферическим днищем. Но конструкторы быстро поняли: то, что надо — это шар. При меньшей поверхности оболочки можно было наиболее полно использовать внутренний объем. Внутри разместили два радиопередатчика с частотой излучения 20,005 и 40,002 МГц, блок электрохимических источников — серебряно-цинковых аккумуляторов, вентилятор, термореле и воздуховод, устройство бортовой электроавтоматики, датчики температуры и давления, бортовую кабельную сеть.

Почему «бип-бип-бип»?

Сигналы спутника имели вид телеграфных посылок («бипов») длительностью 0,2-0,6 сек. Мощность излучения сигнала составляла 1 Вт. Частота «бипов» и пауза между ними определялась датчиками контроля давления и температуры, что обеспечивало простой контроль герметичности его корпуса. Радиопередача сигналов продолжалась три недели.

Почему он кувыркался?

Система ориентации спутников тогда еще не была разработана. Поэтому неправильно представлять полет ПС-1 корпусом «вперёд» и антеннами «назад». Скорее всего, он «кувыркался» на орбите.

Наталия Михайловна Тихонравова — кандидат биологических наук, ведущий научный сотрудник Государственного научного центра РФ — Института медико-биологических проблем РАН.

Последние изменения

13.03.2020

Завершено исполнительное производство
№ 28611/20/26040-ИП от 26.02.2020

26.02.2020

Новое исполнительное производство
№ 28611/20/26040-ИП от 26.02.2020, сумма требований: 2 225 837 руб.

Новое исполнительное производство
№ 28611/20/26040-ИП от 26.02.2020

03.12.2019

Завершено исполнительное производство
№ 125665/19/26040-ИП от 08.11.2019

08.11.2019

Новое исполнительное производство
№ 125665/19/26040-ИП от 08.11.2019, сумма требований: 1 949 руб.

Новое исполнительное производство
№ 125665/19/26040-ИП от 08.11.2019

06.03.2019

Хлистун Юрий Николаевич: должность изменена с Директор на Ликвидатор

Статус организации изменен с «действующая» на «в процессе ликвидации».

Использование спутниковой связи. Особенности эксплуатации спутников связи:

В начальный период освоения околоземного пространства в интересах ретрансляции радиосигнала в космос запускались простейшие спутники, содержащие минимум аппаратуры на борту (космические спутники «ЭХО» и «ЭХО-2»). В качестве ретранслятора использовалась металлическая сфера корпуса, обладающая отражающим действием. Нередко в качестве отражателя использовалась полимерная сфера с металлическим напылением. Коэффициент полезного действия подобных устройств был чрезвычайно низким, поэтому пассивные искусственные спутники должного развития не получили. Их полной противоположностью стали активные искусственные спутники, имеющие внутри сложную электронную начинку, предназначенную для приема, обработки, усиления и передачи радиосигнала в любую точку земного шара.

По способу обработки радиосигнала космические спутники классифицируются на два типа: регенеративные и нерегенеративные ИСС.

Регенеративные спутники связи осуществляют более объемный набор операций – на стадии приема сигнала производит его демодуляцию, а в момент ретрансляции осуществляет его модуляцию. Такой способ обработки радиосигнала требует дополнительного оборудования и характеризуется достаточной сложностью. Регенеративные спутники отличаются высокой стоимостью.

Нерегенеративные спутники связи обеспечивают простейший набор операций с радиосигналом. В момент приема сигнала от земной станции – искусственный спутник связи обеспечивает его усиление и перенос на другую частоту. В последующем, радиосигнал ретранслируется на другую земную станцию. Спутник может одновременно принимать и передавать множество радиосигналов по разным каналам (транспондерам). Каждому каналу отводится выделенная часть спектра. Недостатком метода является заметная задержка ретранслируемого радиосигнала, обусловленная двойным регламентом исправлением ошибок.

4 октября 1957 года в космос был выведен первый в мире искусственный спутник Земли

4 октября 1957 года на околоземную орбиту был выведен первый в мире искусственный спутник Земли, открывший космическую эру в истории человечества.

Спутник, ставший первым искусственным небесным телом, был выведен на орбиту ракетой-носителем Р-7 с 5-го Научно-исследовательского испытательного полигона Министерства обороны СССР, получившего впоследствии открытое наименование космодром Байконур.

Космический аппарат ПС-1 (простейший спутник-1) представлял собой шар диаметром 58 сантиметров, весил 83,6 килограмма, был оснащен четырьмя штырьковыми антеннами длиной 2,4 и 2,9 метра для передачи сигналов работающих от батареек передатчиков. Через 295 секунд после старта ПС-1 и центральный блок ракеты весом 7,5 тонны были выведены на эллиптическую орбиту высотой в апогее 947 км и перигее 288 км. На 315 секунде после старта ИСЗ отделился от второй ступени ракеты-носителя, и сразу его позывные услышал весь мир.

5 октября 1957 года газета «Правда» сообщила:

«…4 октября 1957 года в СССР произведен успешный запуск первого спутника. По предварительным данным, ракета-носитель сообщила спутнику необходимую орбитальную скорость около 8000 метров в секунду. В настоящее время спутник описывает эллиптические траектории вокруг Земли и его полет можно наблюдать в лучах восходящего и заходящего Солнца при помощи простейших оптических инструментов (биноклей, подзорных труб и т. п.).

Согласно расчетам, которые сейчас уточняются прямыми наблюдениями, спутник будет двигаться на высотах до 900 километров над поверхностью Земли; время одного полного оборота спутника будет 1 час 35 минут, угол наклона орбиты к плоскости экватора равен 65°. Над районом города Москвы 5 октября 1957 года спутник пройдет дважды — в 1 час 46 мин. ночи и в 6 час. 42 мин. утра по московскому времени. Сообщения о последующем движении первого искусственного спутника, запущенного в СССР 4 октября, будут передаваться регулярно широковещательными радиостанциями.

Спутник имеет форму шара диаметром 58 см и весом 83,6 кг. На нем установлены два радиопередатчика, непрерывно излучающие радиосигналы с частотой 20,005 и 40,002 мегагерц (длина волны около 15 и 7,5 метра соответственно). Мощности передатчиков обеспечивают уверенный прием радиосигналов широким кругом радиолюбителей. Сигналы имеют вид телеграфных посылок длительностью около 0,3 сек. с паузой такой же длительности. Посылка сигнала одной частоты производится во время паузы сигнала другой частоты…».

Над созданием искусственного спутника Земли во главе с основоположником практической космонавтики С.П.Королёвым работали ученые М.В.Келдыш, М.К.Тихонравов, Н.С.Лидоренко, В.И.Лапко, Б.С. Чекунов и многие другие.

Спутник ПС-1 летал 92 дня, до 4 января 1958 года, совершив 1440 оборотов вокруг Земли (около 60 миллионов километров), а его радиопередатчики работали в течение двух недель после старта.

Запуск искусственного спутника Земли имел громадное значение для познания свойств космического пространства и изучения Земли как планеты нашей Солнечной системы. Анализ полученных сигналов со спутника дал ученым возможность изучить верхние слои ионосферы, что до этого не представлялось возможным. Кроме того, были получены полезнейшие для дальнейших запусков сведения об условиях работы аппаратуры, проведена проверка всех расчетов, а также определена плотность верхних слоев атмосферы по торможению спутника.

Запуск первого искусственного спутника Земли получил огромный мировой резонанс. О его полете узнал весь мир. Вся мировая пресса говорила об этом событии.

В сентябре 1967 года Международная федерация астронавтики провозгласила 4 октября Днем начала космической эры человечества.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector