«малыш» и «толстяк». атомные бомбардировки сша городов хиросима и нагасаки

Конструкция

Устройство боеприпаса L-11 «Little Boy»: 1 — броневая плита, 2 — электрозапалы Марк-15, 3 — казённая часть орудийного ствола с заглушкой, 4 — мешочки с кордитом, 5 — труба усиления ствола, 6 — стальной задник снаряда, 7 — поддон снаряда из карбида вольфрама, 8 — кольца из урана-235, 9 — выравнивающий стержень, 10 — бронированная труба с электропроводкой, 11 — порты барометрических датчиков, 12 — электроразъёмы, 13 — орудийный ствол калибра 6,5 дюймов, 14 — разъёмы предохранителя, 15 — такелажная серьга, 16 — адаптер мишени, 17 — антенны радиовысотомера, 18 — рукав из карбида вольфрама, 19 — мишень из урана-235, 20 — полониево-бериллиевые инициаторы, 21 — заглушка из карбида вольфама, 22 — наковальня, 23 — рукав мишени из стали К-46, 24 — носовая заглушка диаметром 15 дюймов

Принцип работы. 1 — пороховой заряд, 2 — орудийный ствол, 3 — урановый снаряд, 4 — урановая мишень

Хиросима после ядерного взрыва

Вес бомбы составлял 4,4 тонны, размер 3 метра в длину, 71 сантиметр в диаметре.
Уран для её начинки был добыт в Бельгийском Конго (ныне Демократическая Республика Конго), в Канаде (Большое Медвежье озеро) и в США (штат Колорадо).

Ядерное топливо обладает критической массой: докритическое количество урана просто радиоактивно, сверхкритическое — вызывает цепную ядерную реакцию, сопровождающуюся взрывом. Цепная реакция в топливе критической массы может начаться самопроизвольно, но в «Малыше» используется поток нейтронов, который и вызывает первоначальное деление ядер. При делении ядра сами испускают нейтроны, вызывающие новый «виток» реакции. При слабом потоке нейтронов и плохой «герметизации» масса быстро падает ниже критической, и цепная реакция прекращается. Необходимо быстро довести топливо до сверхкритического состояния и как можно дольше удержать его в этом состоянии, не дав разлететься раньше времени. В «Малыше» эта задача решена так: основная деталь бомбы — обрезанный ствол флотской пушки, на дульном конце которого находятся мишень в виде уранового цилиндра и бериллий-полониевый инициатор. В казённой части ствола — кордитный порох и снаряд из карбида вольфрама, к головной части которого прикреплена урановая труба. Выстрел из такой «пушки» «надевает» трубу на цилиндр со значительной скоростью, доводя массу делящегося вещества до сверхкритической. Одновременно инициатор сжимается, поток нейтронов от него многократно увеличивается, и происходит ядерный взрыв; прочность ствола и давление пороховых газов некоторое время удерживают урановые части.

Бомба содержала 64 килограмма чрезвычайно дорогого высокообогащённого урана, из них около 700 граммов (или чуть более 1 %) непосредственно участвовало в цепной ядерной реакции. Дефект массы в ходе ядерной реакции составил около 600 миллиграммов, то есть по формуле Эйнштейна E=mc2{\displaystyle E=mc^{2}} 600 миллиграммов массы превратились в энергию, эквивалентную энергии взрыва от 13 до 18 тысяч (по разным оценкам) тонн тротила.

Был использован укороченный до 1,8 м ствол морского орудия калибра 16,4 см (6,5″), при этом урановая «мишень» представляла собой цилиндр диаметром 100 мм и массой 25,6 кг, на который при «выстреле» надвигалась цилиндрическая «пуля» массой 38,5 кг с соответствующим внутренним каналом. Такой «интуитивно непонятный» дизайн был сделан для снижения нейтронного фона мишени: в нём она находилась не вплотную, а на расстоянии 59 мм от нейтронного отражателя («тампера»). В результате риск преждевременного начала цепной реакции деления с неполным энерговыделением снижался до нескольких процентов.

Несмотря на низкий коэффициент полезного действия, радиоактивное загрязнение от взрыва было невелико, так как взрыв был произведён в 600 м над землёй, а сам непрореагировавший уран является слаборадиоактивным по сравнению с продуктами ядерной реакции. Взрыватели в бомбу вставлялись непосредственно в бомбоотсеке самолёта через 15 минут после взлёта, чтобы свести до минимума опасность последствий неудачного взлёта. При этом существовала вероятность, что бомба может сработать нештатно.

Конструкция

Плутониевое ядро массой около 6 кг этой бомбы было окружено массивной оболочкой из урана-238 — тампером. Эта оболочка служила для инерционного сдерживания раздувающегося в процессе цепной реакции ядра, чтобы как можно большая часть плутония успела прореагировать. Не менее важная миссия тампера — быть отражателем нейтронов, покидающих активную зону реакции. Кроме того, в процессе соударений с ядрами урана-238 нейтроны теряют энергию, замедляются, становятся тепловыми. Такие нейтроны с низкими энергиями наиболее эффективно поглощаются ядрами плутония.

Тампер был окружён обжимающей оболочкой (англ. pusher) из алюминия. Она обеспечивала равномерность сжатия ядерного заряда ударной волной, одновременно предохраняя внутренние части заряда от непосредственного контакта со взрывчаткой и раскалёнными продуктами её разложения.

Бомбардировка Нагасаки

Кроме того, в бомбе имелся нейтронный инициатор — так называемый «ёжик» (англ. urchin). Обычно «ёжик» — шарик диаметром порядка 2 см из бериллия, покрытый тонким слоем сплава иттрия с полонием или металлического полония-210. «Ёжик» располагается внутри полого плутониевого ядра. Это — первичный источник нейтронов. Он срабатывает в момент перевода заряда в сверхкритическое состояние — при сжатии ядерного заряда взрывной волной обычной взрывчатки ядра полония и бериллия в «ёжике» сближаются, и — испускаемые радиоактивным полонием-210 альфа-частицы выбивают из бериллия нейтроны. Дальше они пролетают сквозь основной заряд, инициируя при столкновениях с ядрами плутония-239 цепную ядерную реакцию. Те нейтроны, что выскакивают за пределы основного заряда, либо тормозятся в тампере, либо отражаются назад в основной заряд.

Эта схема всё же была признана малоэффективной, и неуправляемый тип нейтронного инициирования почти не применялся в дальнейшем.

Нагасаки сейчас

Сброшенная бомба на Нагасаки унесла множество жизней и почти стерла город с лица земли. Однако в виду того, что взрыв произошел в промышленной зоне, это западная часть города, постройки другого района меньше пострадали. На восстановление были направлены деньги из государственного бюджета. Период восстановления длился до 1960 года. В настоящее время численность населения составляет около полумиллиона человек.

Фото Нагасаки

Бомбардировка города началась 1 августа 1945 года. По этой причине часть населения Нагасаки была эвакуирована и не подверглась ядерному воздействию. В день ядерной бомбардировки прозвучала воздушная тревога, сигнал был дан в 7:50 и прекращен в 8:30. После прекращения воздушной тревоги часть населения оставалась в укрытиях. Американский бомбардировщик В-29, вошедший в воздушное пространство Нагасаки был принят за разведывательный самолет и сигнал воздушно тревоги не был подан. Ни кто не догадывался о цели американского бомбардировщика. Взрыв в Нагасаки произошел в 11:02 в воздушном пространстве, бомба не достигла земли. Не смотря на это, результат взрыва унес тысячи жизней. Город Нагасаки имеет несколько мест памяти жертвам ядерного взрыва:

Ворота святилища Санно Дзиндзя. Они представляют собой колонну и часть верхнего перекрытия, все, что уцелело в бомбардировке.

Нагасаки парк мира

Парк мира Нагасаки. Мемориальный комплекс, построенный в память о жертвах катастрофы. На территории комплекса находится Статуя мира и фонтан, символизирующий зараженную воду. До момента бомбардировки ни кто в мире не изучал последствия ядерной волны такого масштаба, ни кто не знал, сколько времени в воде сохраняются вредные вещества. Только спустя годы люди употреблявшие воду обнаружили у себя лучевую болезнь.

Музей атомной бомбы

Музей атомной бомбы. Музей открыт в 1996 году, на территории музея находятся вещи и фотографии жертв ядерной бомбардировки.

Колонна Ураками. Это место является эпицентром взрыва, вокруг сохранившейся колонны находится парковая зона.

Жертвы Хиросимы и Нагасаки ежегодно вспоминаются минутой молчания.  Те, кто скинул бомбы на Хиросиму и Нагасаки ни когда не приносили извинений. Наоборот, пилоты придерживаются государственной позиции, объясняя свои действия военной необходимостью. Что примечательно, Соединенные Штаты Америки до сегодняшнего дня не принесли официальных извинений. Так же не был создан трибунал по расследованию массового уничтожения мирного населения. С момента трагедии Хиросимы и Нагасаки, только один президент посетил Японию с официальным визитом.

Конструкция

Плутониевое ядро массой около 6 кг этой бомбы было окружено массивной оболочкой из урана-238 — тампером. Эта оболочка служила для инерционного сдерживания раздувающегося в процессе цепной реакции ядра, чтобы как можно большая часть плутония успела прореагировать. Не менее важная миссия тампера — быть отражателем нейтронов, покидающих активную зону реакции. Кроме того, в процессе соударений с ядрами урана-238 нейтроны теряют энергию, замедляются, становятся тепловыми. Такие нейтроны с низкими энергиями наиболее эффективно поглощаются ядрами плутония.

Тампер был окружён обжимающей оболочкой (англ. pusher) из алюминия. Она обеспечивала равномерность сжатия ядерного заряда ударной волной, одновременно предохраняя внутренние части заряда от непосредственного контакта со взрывчаткой и раскалёнными продуктами её разложения.

Бомбардировка Нагасаки

Кроме того, в бомбе имелся нейтронный инициатор — так называемый «ёжик» (англ. urchin). Обычно «ёжик» — шарик диаметром порядка 2 см из бериллия, покрытый тонким слоем сплава иттрия с полонием или металлического полония-210. «Ёжик» располагается внутри полого плутониевого ядра. Это — первичный источник нейтронов. Он срабатывает в момент перевода заряда в сверхкритическое состояние — при сжатии ядерного заряда взрывной волной обычной взрывчатки ядра полония и бериллия в «ёжике» сближаются, и — испускаемые радиоактивным полонием-210 альфа-частицы выбивают из бериллия нейтроны. Дальше они пролетают сквозь основной заряд, инициируя при столкновениях с ядрами плутония-239 цепную ядерную реакцию. Те нейтроны, что выскакивают за пределы основного заряда, либо тормозятся в тампере, либо отражаются назад в основной заряд.

Эта схема всё же была признана малоэффективной, и неуправляемый тип нейтронного инициирования почти не применялся в дальнейшем.

Послевоенное развертывание

Высоко оценив потенциал плутониевой имплозионной бомбы, командование армейских ВВС США в ноябре 1945 запросило Лос-Аламос о производстве 200 бомб Mark-III. Однако на тот момент в наличии имелось только два плутониевых заряда. Помимо этого, конструкция прототипного «Толстяка» имела ряд существенных недостатков, не имевших значения для демонстратора, но существенно затруднявших массовое применение этого оружия.

В июле 1946 года два заряда типа Mark-III были использованы в ходе учений «Crossroads». Целью этих испытаний было изучить возможности применения атомного оружия против военных кораблей. Было проведено два взрыва; воздушный и подводный, оба эквивалентом около 23 килотонн. По результатам учений улучшенная версия бомбы Mark III Mod 0 была запущена в серийное производство. Тем не менее, к августу 1946 года в наличии имелось всего девять готовых к применению плутониевых зарядов.

Бомба Mark-III производилась весьма длительное время в разных модификациях. Это было связано со стремлением в первую очередь увеличить существующий арсенал, прежде чем заниматься созданием более совершенных зарядов. В 1948 году производство бомбы Mark III Mod 0 было заменено новыми моделями Mod 1 и Mod 2. Эти модификации имели лишь небольшие отличия от базового прототипа, направленные на более безопасное применение; так, конденсаторы их системы зажигания заряжались только после сброса с самолета. К 1948 на вооружении имелось 53 бомбы Mod 0, которые были впоследствии переделаны в бомбы Mod 1 и Mod 2.

Общее производство бомб Mark-III всех моделей составило с 1945 по 1949 около 120 штук. На этот период эти бомбы составляли основу американского ядерного арсенала. В 1950 они были сняты с вооружения в связи с моральным устареванием; их сменила более совершенная бомба Mark-4.

Физические эффекты ядерного взрыва.

Энергия ядерного взрыва распространяется в виде ударной волны, проникающей радиации, теплового и электромагнитного излучения. После взрыва на землю выпадают радиоактивные осадки. У разных типов оружия различны энергия взрыва и виды радиоактивных осадков. Кроме того, поражающая мощь зависит от высоты взрыва, погодных условий, скорости ветра и характера цели (табл. 1). Несмотря на различия, всем ядерным взрывам присущи некоторые общие свойства. Ударная волна вызывает наибольшие механические разрушения. Она проявляется в резких перепадах давления воздуха, которое разрушает объекты (в частности, здания), и в мощных ветровых потоках, которые уносят и валят людей и объекты. На ударную волну расходуется ок. 50% энергии взрыва, ок. 35% – на тепловое излучение в форме, исходящее от вспышки, которая опережает ударную волну на несколько секунд; оно ослепляет при взгляде на него с расстояния многих километров, вызывает сильные ожоги на расстоянии до 11 км, воспламеняет горючие материалы на обширном пространстве. Во время взрыва испускается интенсивное ионизирующее излучение. Обычно оно измеряется в бэрах – биологических эквивалентах рентгена. Доза в 100 бэр вызывает острую форму лучевой болезни, а в 1000 бэр приводит к летальному исходу. В диапазоне доз между указанными значениями вероятность смерти облученного зависит от его возраста и состояния здоровья. Дозы даже существенно ниже 100 бэр могут приводить к долговременным недугам и предрасположенности к раковым заболеваниям.

Таблица 1. РАЗРУШЕНИЯ, ПРОИЗВОДИМЫЕ ЯДЕРНЫМ ВЗРЫВОМ В 1 МТ
Таблица 1. РАЗРУШЕНИЯ, ПРОИЗВОДИМЫЕ ЯДЕРНЫМ ВЗРЫВОМ В 1 МТ
Расстояние от эпицентра взрыва, км Разрушения Скорость ветра, км/ч Избыточное давление, кПа
1,6–3,2 Сильные разрушения или уничтожение всех наземных сооружений. 483 200
3,2–4,8 Сильные разрушения зданий из железобетона. Умеренные разрушения автодорожных и железнодорожных сооружений.    
4,8–6,4 – « – 272 35
6,4–8 Сильные повреждения кирпичных строений. Ожоги 3-й степени.    
8–9,6 Сильные повреждения строений с деревянным каркаcом. Ожоги 2-й степени. 176 28
9,6–11,2 Возгорание бумаги и тканей. Повал 30% деревьев. Ожоги 1-й степени.    
11,2–12,8 –«– 112 14
17,6–19,2 Возгорание сухой листвы. 64 8,4

При взрыве мощного ядерного заряда количество погибших от ударной волны и теплового излучения будет несравненно больше числа погибших от проникающей радиации. При взрыве малой ядерной бомбы (такой, какая разрушила Хиросиму) большая доля летальных исходов обусловливается проникающей радиацией. Оружие с повышенным излучением, или нейтронная бомба, может убить почти все живое исключительно радиацией.

При взрыве на земной поверхности выпадает больше радиоактивных осадков, т.к. при этом в воздух взметаются массы пыли. Поражающий эффект зависит и от того, идет ли дождь и куда дует ветер. При взрыве бомбы в 1 Мт радиоактивные осадки могут покрыть площадь до 2600 кв. км. Различные радиоактивные частицы распадаются с разными скоростями; до сих пор на земную поверхность возвращаются частицы, заброшенные в стратосферу при атмосферных испытаниях ядерного оружия в 1950–1960-х годах. Одни – слабо пораженные – зоны могут стать относительно безопасными в считанные недели, другим на это требуются годы.

Электромагнитный импульс (ЭМИ) возникает в результате вторичных реакций – при поглощении гамма-излучения ядерного взрыва воздухом или почвой. По своей природе он подобен радиоволнам, но напряженность электрического поля в нем намного выше; проявляется ЭМИ как единичный всплеск продолжительностью в доли секунды. Наиболее мощные ЭМИ возникают при взрывах на большой высоте (выше 30 км) и распространяются на десятки тысяч километров. Они не угрожают непосредственно жизни людей, но способны парализовать системы электроснабжения и связи.

Воспоминания очевидцев

  • «Три цвета характеризуют для меня день, когда атомная бомба была сброшена на Хиросиму: черный, красный и коричневый. Черный, потому что взрыв отрезал солнечный свет и погрузил мир в темноту. Красный был цветом крови, текущей из израненных и переломанных людей. Он также был цветом пожаров, сжегших все в городе. Коричневый был цветом сожженной, отваливающейся от тела кожи, подвергшейся действию светового излучения от взрыва» (воспоминания Акико Такакура, одной из немногих выживших, находившихся в момент взрыва на расстоянии 300 м от эпицентра).

  • «Можно было без конца перетаскивать людей к госпиталю, но мы сомневались, выживут ли они, так как даже на перевязочном пункте не могли оказать им эффективной помощи», – вспоминал иезуит преподобный Джон Симес.

  • «Мы наблюдали за самолетом, а затем увидели парашют. И вдруг произошла мощная вспышка наподобие той, что используют фотографы. По привычке я пригнулся, а затем был опрокинут взрывной волной на спину. Я закрыл глаза и приготовился к смерти. Затем я почувствовал жар. Сравнить это ощущение не с чем – могу сказать, что чувствовал, как меня заживо зажаривают… Я пытался двигать ногами и руками, чтобы сбить этот жар, но не чувствовал своих конечностей… Спустя пару минут я собрался и открыл глаза. Тогда я увидел, что часть моего тела охвачена пламенем», – рассказывал японский военнослужащий Такехико Сакаи, которому удалось спастись, несмотря на серьезные ожоги.

  • «Неожиданно раздался оглушительный грохот, и стало вдруг очень темно. Дом разрушился. Но из-за сплошной темноты и пыли было неясно, куда бежать. Скорее к реке! Лейте на себя воду! Неделю мы провели на берегу реки, обливаясь водой и накрываясь рогожей. А вокруг на берегу все умирали и умирали люди…» – вспоминал эмигрант Федор Парашутин, имевший в Хиросиме магазин, собственный дом и автомобиль.

  • «Мы сделали поворот на 180 градусов и отлетели подальше от ударных волн. Затем обернулись, чтобы увидеть повреждения. Мы не видели ничего, кроме яркой вспышки. Затем увидели белое грибовидное облако, которое висело над городом. Под облаком город полностью был охвачен дымом и напоминал котел с черной кипящей смолой. А по окраинам городам был виден огонь», – рассказывал штурман B-29 Теодор ван Кирк.

  • «Я взял микрофон и объявил: «Друзья! Мы совершили первую в истории атомную бомбардировку». Уже потом кинематографисты припишут мне фразу: «Боже, что мы натворили!» – вспоминал впоследствии командир самолета Пол Тиббетс.

Знаменитый Купол Гэмбаку, до Второй мировой войны являвшийся Выставочным центром торгово-промышленной палаты Хиросимы Фото: Pixabay

Взрыв на испытаниях «Папы всех бомб»

Это уже наш ответ американцам – разработка авиационной вакуумной бомбы повышенной мощности, неофициально получившей название «Папа всех бомб». Боеприпас был создан в 2007 году и теперь именно эта бомба считается самым мощным неядерным снарядом в мире.

В отчетах по испытанию бомбы сказано, что площадь поражения «Папы» настолько велика, что позволяет снизить стоимость производства боеприпаса за счет уменьшения требований к точности. Действительно, к чему прицельное попадание, если разнесет все вокруг в радиусе 200 метров. И даже на расстоянии двух с лишним километров от эпицентра взрыва человека собьет с ног ударной волной. Ведь мощность «Папы» в четыре раза превосходит «Маму» — сила взрыва вакуумной бомбы составляет 44 тонны в тротиловом эквиваленте. В качестве отдельного достижения испытатели приводят довод об экологичности снаряда. «Результаты испытаний созданного авиационного боеприпаса показали, что он по своей эффективности и возможностям соизмерим с ядерным боеприпасом, в то же время, я хочу это особо подчеркнуть, действие этого боеприпаса абсолютно не загрязняет окружающую среду по сравнению с ядерным боеприпасом», — сказано в отчете и.о. начальника Генерального штаба ВС России Александр Рукшин.

«Папа всех бомб» примерно вчетверо мощнее «Мамы»

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector